Lieb-Robinson Light Cone for Power-Law Interactions

被引:57
作者
Tran, Minh C. [1 ,2 ]
Guo, Andrew Y. [1 ,2 ]
Baldwin, Christopher L. [1 ,2 ]
Ehrenberg, Adam [1 ,2 ]
Gorshkov, Alexey, V [1 ,2 ]
Lucas, Andrew [3 ,4 ]
机构
[1] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, NIST, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Quantum Inst, NIST, College Pk, MD 20742 USA
[3] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[4] Univ Colorado, Ctr Theory Quantum Matter, Boulder, CO 80309 USA
关键词
QUANTUM; BOUNDS;
D O I
10.1103/PhysRevLett.127.160401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Lieb-Robinson theorem states that information propagates with a finite velocity in quantum systems on a lattice with nearest-neighbor interactions. What are the speed limits on information propagation in quantum systems with power-law interactions, which decay as 1/r(a) at distance r? Here, we present a definitive answer to this question for all exponents a > 2d and all spatial dimensions d. Schematically, information takes time at least r(min{1,a-2d}) to propagate a distance r. As recent state transfer protocols saturate this bound, our work closes a decades-long hunt for optimal Lieb-Robinson bounds on quantum information dynamics with power-law interactions.
引用
收藏
页数:6
相关论文
共 32 条
[1]   Lieb-robinson bounds and the generation of correlations and topological quantum order [J].
Bravyi, S. ;
Hastings, M. B. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[2]  
Chen C.-F., ARXIV210509960
[3]  
Chen C.-F., ARXIV210309186
[4]   Operator Growth Bounds from Graph Theory [J].
Chen, Chi-Fang ;
Lucas, Andrew .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 385 (03) :1273-1323
[5]   Finite Speed of Quantum Scrambling with Long Range Interactions [J].
Chen, Chi-Fang ;
Lucas, Andrew .
PHYSICAL REVIEW LETTERS, 2019, 123 (25)
[6]   Quantum-capacity bounds in spin-network communication channels [J].
Chessa, Stefano ;
Fanizza, Marco ;
Giovannetti, Vittorio .
PHYSICAL REVIEW A, 2019, 100 (03)
[7]   Theory of Trotter Error with Commutator Scaling [J].
Childs, Andrew M. ;
Su, Yuan ;
Tran, Minh C. ;
Wiebe, Nathan ;
Zhu, Shuchen .
PHYSICAL REVIEW X, 2021, 11 (01)
[8]   Dynamical Phase Transitions in Sampling Complexity [J].
Deshpande, Abhinav ;
Fefferman, Bill ;
Tran, Minh C. ;
Foss-Feig, Michael ;
Gorshkov, Alexey, V .
PHYSICAL REVIEW LETTERS, 2018, 121 (03)
[9]   Colloquium: Area laws for the entanglement entropy [J].
Eisert, J. ;
Cramer, M. ;
Plenio, M. B. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (01) :277-306
[10]   Fast Quantum State Transfer and Entanglement Renormalization Using Long-Range Interactions [J].
Eldredge, Zachary ;
Gong, Zhe-Xuan ;
Young, Jeremy T. ;
Moosavian, Ali Hamed ;
Foss-Feig, Michael ;
Gorshkov, Alexey V. .
PHYSICAL REVIEW LETTERS, 2017, 119 (17)