Arbitrary l-state solutions of the Klein-Gordon equation with the Manning-Rosen plus a Class of Yukawa potentials

被引:61
作者
Ahmadov, A., I [1 ,2 ]
Demirci, M. [3 ]
Aslanova, S. M. [1 ]
Mustamin, M. F. [3 ]
机构
[1] Baku State Univ, Dept Theoret Phys, Z Khalilov St 23, AZ-1148 Baku, Azerbaijan
[2] Baku State Univ, Inst Phys Problems, Z Khalilov St 23, AZ-1148 Baku, Azerbaijan
[3] Karadeniz Tech Univ, Dept Phys, TR-61080 Trabzon, Turkey
关键词
Klein-Gordon equation; Manning-Rosen potential; A Class of Yukawa potential; Nikiforov-Uvarov method; SUSY quantum mechanics; SHIFTED 1/N EXPANSION; DIRAC-EQUATION; HULTHEN; SCHRODINGER; SPIN; APPROXIMATION;
D O I
10.1016/j.physleta.2020.126372
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Focusing on an improved approximation scheme, we present how to treat the centrifugal and the Coulombic behavior terms and then to obtain the bound state solutions of the Klein-Gordon (KG) equation with the Manning-Rosen plus a Class of Yukawa potentials. By means of the Nikiforov-Uvarov (NU) and supersymmetric quantum mechanics (SUSYQM) methods, we present the energy spectrum for any l-state and the corresponding radial wave functions in terms of the hypergeometric functions. From both methods we obtain the same results. Several special cases for the potentials which are useful for other physical systems are also discussed. These are consistent with those results in previous works. We obtain that the energy level E is sensitive to the potential parameter delta at fixed values of other parameters and increases when delta runs from 0.05 to 0.3. Furthermore, l is sensitive to the quantum numbers and n(r) for a given delta, as expected. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 56 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F, V9th
[2]   Approximate bound state solutions of the Klein-Gordon equation with the linear combination of Hulthen and Yukawa potentials [J].
Ahmadov, A., I ;
Aslanova, S. M. ;
Orujova, M. Sh ;
Badalov, S., V ;
Doug, Shi-Hai .
PHYSICS LETTERS A, 2019, 383 (24) :3010-3017
[3]   Bound state solution of the Klein-Fock-Gordon equation with the Hulthen plus a ring-shaped-like potential within SUSY quantum mechanics [J].
Ahmadov, A., I ;
Nagiyev, Sh M. ;
Qocayeva, M., V ;
Uzun, K. ;
Tarverdiyeva, V. A. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2018, 33 (33)
[4]   Analytical bound-state solutions of the Schrodinger equation for the Manning-Rosen plus Hulthen potential within SUSY quantum mechanics [J].
Ahmadov, A. I. ;
Naeem, Maria ;
Qocayeva, M. V. ;
Tarverdiyeva, V. A. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2018, 33 (03)
[5]  
Ahmadov A.I., 2019, J PHYS C SER, V1416
[6]  
[Anonymous], 1988, Special Functions of Mathematical Physics
[7]  
[Anonymous], 2023, Private communication
[8]   Effective-mass Klein-Gordon-Yukawa problem for bound and scattering states [J].
Arda, Altug ;
Sever, Ramazan .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (09)
[9]   ANY l-STATE ANALYTICAL SOLUTIONS OF THE KLEIN-GORDON EQUATION FOR THE WOODS-SAXON POTENTIAL [J].
Badalov, V. H. ;
Ahmadov, H. I. ;
Badalov, S. V. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2010, 19 (07) :1463-1475
[10]   Analytical light bullet solutions to the generalized (3+1)-dimensional nonlinear schrodinger equation [J].
Belic, Milivoj ;
Petrovic, Nikola ;
Zhong, Wei-Ping ;
Xie, Rui-Hua ;
Chen, Goong .
PHYSICAL REVIEW LETTERS, 2008, 101 (12)