Dimension of interaction dynamics -: art. no. 036221

被引:11
作者
Wójcik, D
Nowak, A
Kus, M
机构
[1] Polish Acad Sci, Ctr Theoret Phys, PL-02668 Warsaw, Poland
[2] Coll Sci, PL-02668 Warsaw, Poland
[3] Inst Social Studies, PL-00183 Warsaw, Poland
[4] Univ Paris 06, Lab Kastler Brossel, F-75252 Paris, France
[5] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
关键词
D O I
10.1103/PhysRevE.63.036221
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A method allowing one to distinguish interacting from noninteracting systems based on available time series is proposed and investigated. Some facts concerning generalized Renyi dimensions that form the basis of our method are proved. We show that one can find the dimension of the part of the attractor of the system connected with interaction between its parts. We use our method to distinguish interacting from noninteracting systems on the examples of logistic and Henon maps. A classification of all possible interaction schemes is given.
引用
收藏
页码:362211 / 3622115
页数:15
相关论文
共 58 条
  • [1] Abarbanel H, 1996, ANAL OBSERVED CHAOTI
  • [2] THE ANALYSIS OF OBSERVED CHAOTIC DATA IN PHYSICAL SYSTEMS
    ABARBANEL, HDI
    BROWN, R
    SIDOROWICH, JJ
    TSIMRING, LS
    [J]. REVIEWS OF MODERN PHYSICS, 1993, 65 (04) : 1331 - 1392
  • [3] HAUSDORFF DIMENSION AND UNIFORMITY FACTOR OF STRANGE ATTRACTORS
    BADII, R
    POLITI, A
    [J]. PHYSICAL REVIEW LETTERS, 1984, 52 (19) : 1661 - 1664
  • [4] BADII R, 1985, J STAT PHYS, V40, P725, DOI 10.1007/BF01009897
  • [5] Beck C., 1997, THERMODYNAMICS CHAOT
  • [6] STATE-SPACE RECONSTRUCTION IN THE PRESENCE OF NOISE
    CASDAGLI, M
    EUBANK, S
    FARMER, JD
    GIBSON, J
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1991, 51 (1-3) : 52 - 98
  • [7] ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS
    ECKMANN, JP
    RUELLE, D
    [J]. REVIEWS OF MODERN PHYSICS, 1985, 57 (03) : 617 - 656
  • [8] Evertsz C.J.G., 1992, Multifractal Measures, Chaos and Fractals: New Frontiers of Science, P921
  • [9] Falconer K., 1997, Techniques in fractal geometry
  • [10] FARMER JD, 1982, Z NATURFORSCH A, V37, P1304