Optimization of Randomized Monte Carlo Algorithms for Solving Problems with Random Parameters

被引:1
作者
Mikhailov, G. A. [1 ,2 ]
机构
[1] Russian Acad Sci, Inst Computat Math & Math Geophys, Siberian Branch, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
PROBABILITY DENSITY; RADIATIVE-TRANSFER; MODELS;
D O I
10.1134/S1064562418060157
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Randomized Monte Carlo algorithms intended for statistical kernel estimation of the averaged solution to a problem with random baseline parameters are optimized. For this purpose, a criterion for the complexity of a functional Monte Carlo estimate is formulated. The algorithms involve a splitting method in which, for each realization of the parameters, a certain number of trajectories of the corresponding baseline process are constructed.
引用
收藏
页码:448 / 451
页数:4
相关论文
共 50 条
[41]   FitSKIRT: genetic algorithms to automatically fit dusty galaxies with a Monte Carlo radiative transfer code [J].
De Geyter, G. ;
Baes, M. ;
Fritz, J. ;
Camps, P. .
ASTRONOMY & ASTROPHYSICS, 2013, 550
[42]   Monte Carlo simulations of mesoscale fracture of concrete with random aggregates and pores: a size effect study [J].
Wang, Xiaofeng ;
Yang, Zhenjun ;
Jivkov, Andrey P. .
CONSTRUCTION AND BUILDING MATERIALS, 2015, 80 :262-272
[43]   Monte Carlo Estimation of Functional Characteristics of Field Intensity of Radiation Passing through a Random Medium [J].
Ambos, A. Yu. ;
Mikhailov, G. A. .
NUMERICAL ANALYSIS AND APPLICATIONS, 2018, 11 (04) :279-292
[44]   Calculation of Kinetic Parameters of Thermal Decomposition of Forest Waste using the Monte Carlo Technique [J].
Dhaundiyal, Alok ;
Toth, Laszlo .
ENVIRONMENTAL AND CLIMATE TECHNOLOGIES, 2020, 24 (01) :162-170
[45]   Multiple imputation of missing at random data: General points and presentation of a Monte-Carlo method [J].
Cottrell, G. ;
Cot, M. ;
Mary, J. -Y. .
REVUE D EPIDEMIOLOGIE ET DE SANTE PUBLIQUE, 2009, 57 (05) :361-372
[46]   Interval identification of structural parameters using interval overlap ratio and Monte Carlo simulation [J].
Deng Zhongmin ;
Guo Zhaopu .
ADVANCES IN ENGINEERING SOFTWARE, 2018, 121 :120-130
[47]   Machine-learning-assisted Monte Carlo fails at sampling computationally hard problems [J].
Ciarella, Simone ;
Trinquier, Jeanne ;
Weigt, Martin ;
Zamponi, Francesco .
MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (01)
[48]   Optimization of Image Quality in Digital Mammography with the Response of a Selenium Detector by Monte Carlo Simulation [J].
Szewczuk, Marek ;
Konefal, Adam .
APPLIED SCIENCES-BASEL, 2023, 13 (01)
[49]   Progress in design optimization using evolutionary algorithms for aerodynamic problems [J].
Lian, Yongsheng ;
Oyama, Akira ;
Liou, Meng-Sing .
PROGRESS IN AEROSPACE SCIENCES, 2010, 46 (5-6) :199-223
[50]   New Monte Carlo algorithms for investigation of criticality fluctuations in the particle scattering process with multiplication in stochastic media [J].
Ambos, Andrey Yu. ;
Lotova, Galiya ;
Mikhailov, Guennady .
RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2017, 32 (03) :165-172