Optimization of Randomized Monte Carlo Algorithms for Solving Problems with Random Parameters

被引:1
作者
Mikhailov, G. A. [1 ,2 ]
机构
[1] Russian Acad Sci, Inst Computat Math & Math Geophys, Siberian Branch, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
PROBABILITY DENSITY; RADIATIVE-TRANSFER; MODELS;
D O I
10.1134/S1064562418060157
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Randomized Monte Carlo algorithms intended for statistical kernel estimation of the averaged solution to a problem with random baseline parameters are optimized. For this purpose, a criterion for the complexity of a functional Monte Carlo estimate is formulated. The algorithms involve a splitting method in which, for each realization of the parameters, a certain number of trajectories of the corresponding baseline process are constructed.
引用
收藏
页码:448 / 451
页数:4
相关论文
共 50 条
[11]   Solving Variables With Monte Carlo Simulation Experiments: A Stochastic Root-Solving Approach [J].
Chalmers, R. Philip .
PSYCHOLOGICAL METHODS, 2024,
[12]   An optimization framework with dimensionality reduction using Markov Chain Monte Carlo and genetic algorithms for groundwater potential assessment [J].
Wang, Zitao ;
Yue, Chao ;
Wang, Jianping .
APPLIED SOFT COMPUTING, 2024, 164
[13]   Three viewpoints on null-collision Monte Carlo algorithms [J].
El Hafi, Mouna ;
Blanco, Stephane ;
Dauchet, Jeremi ;
Fournier, Richard ;
Galtier, Mathieu ;
Ibarrart, Loris ;
Tregan, Jean-Marc ;
Villefranque, Najda .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2021, 260
[14]   Optimization-Based Markov Chain Monte Carlo Methods for Nonlinear Hierarchical Statistical Inverse Problems [J].
Bardsley, Johnathan M. ;
Cui, Tiangang .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (01) :29-64
[15]   Solving random mixed heat problems: A random integral transform approach [J].
Casaban, M. -C. ;
Cortes, J. -C. ;
Jodar, L. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 291 :5-19
[16]   Comparison of four parallel algorithms for domain decomposed implicit Monte Carlo [J].
Brunner, TA ;
Urbatsch, TJ ;
Evans, TM ;
Gentile, NA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 212 (02) :527-539
[17]   Fast alternative Monte Carlo formalism for a class of problems in biophotonics [J].
Miller, SD .
OPTICAL ENGINEERING, 1997, 36 (12) :3425-3432
[18]   Markov Chain Monte Carlo solutions for radiative transfer problems [J].
von Waldenfels, W. ;
Wehrse, R. ;
Baschek, B. .
ASTRONOMY & ASTROPHYSICS, 2011, 525
[19]   A note on random walks with absorbing barriers and sequential Monte Carlo methods [J].
Del Moral, Pierre ;
Jasra, Ajay .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (03) :413-442
[20]   Resampling Markov Chain Monte Carlo Algorithms: Basic Analysis and Empirical Comparisons [J].
Tan, Zhiqiang .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2015, 24 (02) :328-356