Effect of synthetic routes on the rate performance of Li-rich layered Li1.2Mn0.56Ni0.12Co0.12O2

被引:66
作者
Fu, Fang [1 ]
Wang, Qi [1 ]
Deng, Ya-Ping [2 ]
Shen, Chong-Heng [1 ]
Peng, Xin-Xing [1 ]
Huang, Ling [1 ]
Sun, Shi-Gang [1 ,2 ]
机构
[1] Xiamen Univ, Dept Chem, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Sch Energy Res, Xiamen 361005, Peoples R China
关键词
LITHIUM-ION BATTERIES; IN-SITU XRD; CATHODE MATERIALS; ELECTROCHEMICAL PERFORMANCE; HIGH-CAPACITY; FACILE SYNTHESIS; SOLVOTHERMAL SYNTHESIS; HYDROTHERMAL SYNTHESIS; STRUCTURAL-CHANGES; STORAGE MATERIAL;
D O I
10.1039/c4ta06552b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Different morphologies and compositions of Li-rich layered Li1.2Mn0.56Ni0.12Co0.12O2 (LMNCO) materials are successfully synthesized by solvothermal and coprecipitation methods. The samples synthesized by the solvothermal method possess a 3D porous hierarchical microstructure and designed chemical components, while those prepared through the coprecipitation method present partially agglomerated nanoplates and Mn-deficiency. When used as a cathode for lithium ion batteries (LIBs), the LMNCO synthesized by the solvothermal method exhibits superior performances to that prepared by the coprecipitation method, especially in terms of discharge capacity and rate capability: it delivers a discharge capacity of 292.3 mA h g(-1) at 0.2 C and 131.1 mA h g(-1) even at a rate as high as 10 C. The excellent electrochemical performances of the LMNCO synthesized by the solvothermal method are associated with a synergistic effect of the well-defined morphology and well-ordered structure with good homogeneity and designed stoichiometry. The results demonstrate that the facile solvothermal method may offer an attractive alternative approach for the preparation of Li-rich layered cathode materials with high rate capability.
引用
收藏
页码:5197 / 5203
页数:7
相关论文
共 39 条
[1]   Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 [J].
Armstrong, A. Robert ;
Holzapfel, Michael ;
Novak, Petr ;
Johnson, Christopher S. ;
Kang, Sun-Ho ;
Thackeray, Michael M. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) :8694-8698
[2]   A hierarchical micro/nanostructured 0.5Li2MnO3.0.5LiMn0.4Ni0.3Co0.3O2 material synthesized by solvothermal route as high rate cathode of lithium ion battery [J].
Fu, Fang ;
Deng, Ya-Ping ;
Shen, Chong-Heng ;
Xu, Gui-Liang ;
Peng, Xin-Xing ;
Wang, Qi ;
Xu, Yue-Feng ;
Fang, Jun-Chuan ;
Huang, Ling ;
Sun, Shi-Gang .
ELECTROCHEMISTRY COMMUNICATIONS, 2014, 44 :54-58
[3]   Synthesis of single crystalline hexagonal nanobricks of LiNi1/3Co1/3Mn1/3O2 with high percentage of exposed {010} active facets as high rate performance cathode material for lithium-ion battery [J].
Fu, Fang ;
Xu, Gui-Liang ;
Wang, Qi ;
Deng, Ya-Ping ;
Li, Xue ;
Li, Jun-Tao ;
Huang, Ling ;
Sun, Shi-Gang .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (12) :3860-3864
[4]   Interdispersed Amorphous MnOx-Carbon Nanocomposites with Superior Electrochemical Performance as Lithium-Storage Material [J].
Guo, Juchen ;
Liu, Qing ;
Wang, Chunsheng ;
Zachariah, Michael R. .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (04) :803-811
[5]   Improved electrochemical performances of nanocrystalline Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries [J].
He, Wei ;
Qian, Jiangfeng ;
Cao, Yuliang ;
Ai, Xinping ;
Yang, Hanxi .
RSC ADVANCES, 2012, 2 (08) :3423-3429
[6]   Hydrothermal Synthesis of Nanosized LiMnO2-Li2MnO3 Compounds and Their Electrochemical Performances [J].
Huang, Xingkang ;
Zhang, Qingshun ;
Chang, Haitao ;
Gan, Jianlong ;
Yue, Hongjun ;
Yang, Yong .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (03) :A162-A168
[7]   A combined computational/experimental study on LiNi1/3Co1/3Mn1/3O2 [J].
Hwang, BJ ;
Tsai, YW ;
Carlier, D ;
Ceder, G .
CHEMISTRY OF MATERIALS, 2003, 15 (19) :3676-3682
[8]   Graphene-Encapsulated Si on Ultrathin-Graphite Foam as Anode for High Capacity Lithium-Ion Batteries [J].
Ji, Junyi ;
Ji, Hengxing ;
Zhang, Li Li ;
Zhao, Xin ;
Bai, Xin ;
Fan, Xiaobin ;
Zhang, Fengbao ;
Ruoff, Rodney S. .
ADVANCED MATERIALS, 2013, 25 (33) :4673-4677
[9]   Facile synthesis of mesoporous 0.4Li2MnO3•0.6LiNi2/3Mn1/3O2 foams with superior performance for lithium-ion batteries [J].
Jiang, Yan ;
Yang, Ze ;
Luo, Wei ;
Hu, Xian-Luo ;
Zhang, Wu-Xing ;
Huang, Yun-Hui .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (30) :14964-14969
[10]   Solvothermal synthesis and excellent electrochemical performance of polycrystalline rose-like Co9S8 hierarchical architectures [J].
Jin, Rencheng ;
Liu, Junshen ;
Xu, Yanbin ;
Li, Guihua ;
Chen, Gang .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (27) :7995-7999