On dual description of the deformed O(N) sigma model

被引:14
作者
Litvinov, A. V. [1 ,2 ]
Spodyneiko, L. A. [1 ,3 ]
机构
[1] Landau Inst Theoret Phys, Semenova 1a, Chernogolovka 142432, Russia
[2] Natl Res Univ Higher Sch Econ, Dept Math, Usacheva 6, Moscow 119048, Russia
[3] CALTECH, Pasadena, CA 91125 USA
基金
俄罗斯科学基金会;
关键词
Integrable Field Theories; Sigma Models; INTEGRABLE DEFORMATIONS; 2-PARAMETER FAMILY; MATRIX;
D O I
10.1007/JHEP11(2018)139
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study dual strong coupling description of integrability-preserving deformation of the O(N) sigma model. Dual theory is described by a coupled theory of Dirac fermions with four-fermion interaction and bosonic fields with exponential interactions. We claim that both theories share the same integrable structure and coincide as quantum field theories. We construct a solution of Ricci flow equation which behaves in the UV as a free theory perturbed by graviton operators and show that it coincides with the metric of the -deformed O(N) sigma-model after T -duality transformation.
引用
收藏
页数:29
相关论文
共 32 条
[1]   S-matrix for strings on η-deformed AdS5 x S5 [J].
Arutyunov, Gleb ;
Borsato, Riccardo ;
Frolov, Sergey .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (04)
[2]   Expectation values of local fields for a two-parameter family of integrable models and related perturbed conformal field theories [J].
Baseilhac, P ;
Fateev, VA .
NUCLEAR PHYSICS B, 1998, 532 (03) :567-587
[3]   Quantum transfer-matrices for the sausage model [J].
Bazhanov, Vladimir V. ;
Kotousov, Gleb A. ;
Lukyanov, Sergei L. .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (01)
[4]   Integrable structure of Quantum Field Theory: classical flat connections versus quantum stationary states [J].
Bazhanov, Vladimir V. ;
Lukyanov, Sergei L. .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (09)
[5]   TRIGONOMETRIC SOLUTIONS OF TRIANGLE EQUATIONS AND CLASSICAL LIE-ALGEBRAS [J].
BAZHANOV, VV .
PHYSICS LETTERS B, 1985, 159 (4-6) :321-324
[6]   RENORMALIZATION OF NONLINEAR SIGMA-MODEL IN 2+ EPSILON-DIMENSIONS-APPLICATION TO HEISENBERG FERROMAGNETS [J].
BREZIN, E ;
ZINJUSTIN, J .
PHYSICAL REVIEW LETTERS, 1976, 36 (13) :691-694
[7]   QUANTUM SINE-GORDON EQUATION AS MASSIVE THIRRING MODEL [J].
COLEMAN, S .
PHYSICAL REVIEW D, 1975, 11 (08) :2088-2097
[8]   On classical q-deformations of integrable σ-models [J].
Delduc, F. ;
Magro, M. ;
Vicedo, B. .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11)
[9]   Multipoint correlation functions in Liouville field theory and minimal Liouville gravity [J].
Fateev, V. A. ;
Litvinov, A. V. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2008, 154 (03) :454-472
[10]  
Fateev V. A., ARXIV180403399