Variational-like inequalities with generalized monotone mappings in Banach spaces

被引:125
作者
Fang, YP [1 ]
Huang, NJ [1 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
variational-like inequalities; generalized monotone mappings; KKM mappings; eta-hemicontinuity; eta-coercivity;
D O I
10.1023/A:1025499305742
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we introduce two classes of variational-like inequalities with generalized monotone mappings in Banach spaces. Using the KKM technique, we obtain the existence of solutions for variational-like inequalities with relaxed eta-alpha monotone mappings in reflexive Banach spaces. We present also the solvability of variational-like inequalities with relaxed eta-alpha semimonotone mappings in arbitrary Banach spaces by means of the Kakutani-Fan-Glicksberg fixed-point theorem. The results presented in this paper extend and improve the corresponding results of Refs. 1-6.
引用
收藏
页码:327 / 338
页数:12
相关论文
共 20 条
[1]   VARIATIONAL-INEQUALITIES FOR MONOTONE-OPERATORS IN NONREFLEXIVE BANACH-SPACES [J].
CHANG, SS ;
LEE, BS ;
CHEN, YQ .
APPLIED MATHEMATICS LETTERS, 1995, 8 (06) :29-34
[2]   On the semi-monotone operator theory and applications [J].
Chen, YQ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 231 (01) :177-192
[3]   PSEUDOMONOTONE COMPLEMENTARITY-PROBLEMS IN HILBERT-SPACE [J].
COTTLE, RW ;
YAO, JC .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 75 (02) :281-295
[4]   Existence and algorithm of solutions for generalized mixed implicit quasi-variational inequalities [J].
Ding, XP .
APPLIED MATHEMATICS AND COMPUTATION, 2000, 113 (01) :67-80
[5]   SOME PROPERTIES OF CONVEX-SETS RELATED TO FIXED-POINT THEOREMS [J].
FAN, K .
MATHEMATISCHE ANNALEN, 1984, 266 (04) :519-537
[6]  
Giannessi F., 2000, VECTOR VARIATIONAL I
[7]  
Glowinski R., 1981, Numerical Analysis of Variational Inequalities
[8]  
Goeleven D, 1996, COMMUN APPL NONLINEA, V3, P1
[9]   Quasimonotone variational inequalities in Banach spaces [J].
Hadjisavvas, N ;
Schaible, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 90 (01) :95-111
[10]  
HARTMAN GJ, 1966, ACTA MATH, V115, P271