COMPUTER-AIDED DETECTION OF PULMONARY NODULES USING GENETIC PROGRAMMING

被引:8
|
作者
Choi, Wook-Jin [1 ]
Choi, Tae-Sun [1 ]
机构
[1] GIST, Sch Informat & Mechatron, Kwangju 500712, South Korea
关键词
HRCT; Pulmonary Nodule; Lung; Nodule detection; CAD development; LUNG NODULES; CT IMAGES; CANCER STATISTICS; DIAGNOSIS; REDUCTION; ALGORITHM;
D O I
10.1109/ICIP.2010.5652369
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes a novel nodule detection method that enhances false positive reduction. Lung region is extracted from CT image sequence using adaptive thresholding and 18-connectedness voxel labelling. In the extracted lung region, nodule candidates are detected using adaptive multiple thresholding and rule based classifier. After that, we extract the 3D and 2D features from nodule candidates. The nodule candidates are then classified using genetic programming (GP) based classifier. In this work, a new fitness function is proposed to generate optimal adaptive classifier. We tested the proposed algorithm by using Lung Imaging Database Consortium (LIDC) database of National Cancer Institute (NCI). The classifier was trained and evaluated using two independent dataset and whole dataset. The proposed method reduced the false positives in nodule candidates and achieved 92% detection rate with 6.5 false positives per scan.
引用
收藏
页码:4353 / 4356
页数:4
相关论文
共 50 条
  • [41] Computer-aided detection for the identification of pulmonary nodules in pediatric oncology patients: initial experience
    Emma J. Helm
    Cicero T. Silva
    Heidi C. Roberts
    David Manson
    Mike T. M. Seed
    Joao G. Amaral
    Paul S. Babyn
    Pediatric Radiology, 2009, 39 : 685 - 693
  • [42] Improved computer-aided detection of pulmonary nodules via deep learning in the sinogram domain
    Yongfeng Gao
    Jiaxing Tan
    Zhengrong Liang
    Lihong Li
    Yumei Huo
    Visual Computing for Industry, Biomedicine, and Art, 2
  • [43] Pulmonary nodules at chest CT: Effect of computer-aided diagnosis on radiologists' detection performance
    Awai, K
    Murao, K
    Ozawa, A
    Komi, M
    Hayakawa, H
    Hori, S
    Nishimura, Y
    RADIOLOGY, 2004, 230 (02) : 347 - 352
  • [44] Computer-aided detection for the identification of pulmonary nodules in pediatric oncology patients: initial experience
    Helm, Emma J.
    Silva, Cicero T.
    Roberts, Heidi C.
    Manson, David
    Seed, Mike T. M.
    Amaral, Joao G.
    Babyn, Paul S.
    PEDIATRIC RADIOLOGY, 2009, 39 (07) : 685 - 693
  • [45] Computer-aided differential diagnosis of small solitary pulmonary nodules
    Belikova, TP
    Yashunskaya, NI
    Kogan, EA
    COMPUTERS AND BIOMEDICAL RESEARCH, 1996, 29 (01): : 48 - 62
  • [46] Computer-aided diagnosis of pulmonary nodules on CT scan images
    Jia, A. Jing
    Liu, B. Jiwei
    Gu, C. Yu
    PROCEEDINGS OF 2018 10TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC), 2018,
  • [47] Texture Feature Analysis for Computer-Aided Diagnosis on Pulmonary Nodules
    Han, Fangfang
    Wang, Huafeng
    Zhang, Guopeng
    Han, Hao
    Song, Bowen
    Li, Lihong
    Moore, William
    Lu, Hongbing
    Zhao, Hong
    Liang, Zhengrong
    JOURNAL OF DIGITAL IMAGING, 2015, 28 (01) : 99 - 115
  • [48] Impact of segmentation uncertainties on computer-aided diagnosis of pulmonary nodules
    Lee, Michael C.
    Wiemker, Rafael
    Boroczky, Lilla
    Sungur-Stasik, Kivilcim
    Cann, Aaron D.
    Borczuk, Alain C.
    Kawut, Steven M.
    Powell, Charles A.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2008, 3 (06) : 551 - 558
  • [49] Impact of segmentation uncertainties on computer-aided diagnosis of pulmonary nodules
    Michael C. Lee
    Rafael Wiemker
    Lilla Boroczky
    Kivilcim Sungur-Stasik
    Aaron D. Cann
    Alain C. Borczuk
    Steven M. Kawut
    Charles A. Powell
    International Journal of Computer Assisted Radiology and Surgery, 2008, 3
  • [50] Texture Feature Analysis for Computer-Aided Diagnosis on Pulmonary Nodules
    Fangfang Han
    Huafeng Wang
    Guopeng Zhang
    Hao Han
    Bowen Song
    Lihong Li
    William Moore
    Hongbing Lu
    Hong Zhao
    Zhengrong Liang
    Journal of Digital Imaging, 2015, 28 : 99 - 115