COMPUTER-AIDED DETECTION OF PULMONARY NODULES USING GENETIC PROGRAMMING

被引:8
|
作者
Choi, Wook-Jin [1 ]
Choi, Tae-Sun [1 ]
机构
[1] GIST, Sch Informat & Mechatron, Kwangju 500712, South Korea
来源
2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING | 2010年
关键词
HRCT; Pulmonary Nodule; Lung; Nodule detection; CAD development; LUNG NODULES; CT IMAGES; CANCER STATISTICS; DIAGNOSIS; REDUCTION; ALGORITHM;
D O I
10.1109/ICIP.2010.5652369
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes a novel nodule detection method that enhances false positive reduction. Lung region is extracted from CT image sequence using adaptive thresholding and 18-connectedness voxel labelling. In the extracted lung region, nodule candidates are detected using adaptive multiple thresholding and rule based classifier. After that, we extract the 3D and 2D features from nodule candidates. The nodule candidates are then classified using genetic programming (GP) based classifier. In this work, a new fitness function is proposed to generate optimal adaptive classifier. We tested the proposed algorithm by using Lung Imaging Database Consortium (LIDC) database of National Cancer Institute (NCI). The classifier was trained and evaluated using two independent dataset and whole dataset. The proposed method reduced the false positives in nodule candidates and achieved 92% detection rate with 6.5 false positives per scan.
引用
收藏
页码:4353 / 4356
页数:4
相关论文
共 50 条
  • [41] Potential contribution of multiplanar reconstruction (MPR) to computer-aided detection of lung nodules on MDCT
    Matsumoto, Sumiaki
    Ohno, Yoshiharu
    Yamagata, Hitoshi
    Nogami, Munenobu
    Kono, Atsushi
    Sugimura, Kazuro
    EUROPEAN JOURNAL OF RADIOLOGY, 2012, 81 (02) : 366 - 370
  • [42] Computer-aided detection of lung nodules based on decision fusion techniques
    Antonelli, Michela
    Cococcioni, Marco
    Lazzerini, Beatrice
    Marcelloni, Francesco
    PATTERN ANALYSIS AND APPLICATIONS, 2011, 14 (03) : 295 - 310
  • [43] Computer-aided detection of artificial pulmonary nodules using an ex vivo lung phantom: Influence of exposure parameters and iterative reconstruction
    Wielpuetz, Mark O.
    Wroblewski, Jacek
    Lederlin, Mathieu
    Dinkel, Julien
    Eichinger, Monika
    Koenigkam-Santos, M.
    Biederer, Juergen
    Kauczor, Hans-Ulrich
    Puderbach, Michael U.
    Jobst, Bertram J.
    EUROPEAN JOURNAL OF RADIOLOGY, 2015, 84 (05) : 1005 - 1011
  • [44] Computer-aided differential diagnosis of pulmonary nodules based on a hybrid classification approach
    Kawata, Y
    Niki, N
    Ohmatsu, H
    Kusumoto, M
    Kakinuma, R
    Mori, K
    Nishiyama, H
    Eguchi, K
    Kaneko, M
    Moriyama, N
    MEDICAL IMAGING: 2001: IMAGE PROCESSING, PTS 1-3, 2001, 4322 : 1796 - 1806
  • [45] Computer-aided diagnosis and volumetry of pulmonary nodules: Current concepts and future perspectives
    Marten, K
    Rummeny, EJ
    Engelke, C
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2005, 177 (02): : 188 - 196
  • [46] Genetic programming-based feature transform and classification for the automatic detection of pulmonary nodules on computed tomography images
    Choi, Wook-Jin
    Choi, Tae-Sun
    INFORMATION SCIENCES, 2012, 212 : 57 - 78
  • [47] Computer-Aided Detection and Diagnosis of Thyroid Nodules Using Machine and Deep Learning Classification Algorithms
    Shankarlal, B.
    Sathya, P. D.
    Sakthivel, V. P.
    IETE JOURNAL OF RESEARCH, 2023, 69 (02) : 995 - 1006
  • [48] An adaptive paradigm for computer-aided detection of colonic polyps
    Wang, Huafeng
    Liang, Zhengrong
    Li, Lihong C.
    Han, Hao
    Song, Bowen
    Pickhardt, Perry J.
    Barish, Matthew A.
    Lascarides, Chris E.
    PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (18) : 7207 - 7228
  • [49] A multi-kernel based framework for heterogeneous feature selection and over-sampling for computer-aided detection of pulmonary nodules
    Cao, Peng
    Liu, Xiaoli
    Yang, Jinzhu
    Zhao, Dazhe
    Li, Wei
    Huang, Min
    Zaiane, Osmar
    PATTERN RECOGNITION, 2017, 64 : 327 - 346
  • [50] Computer-aided diagnosis of ground-glass opacity pulmonary nodules using radiomic features analysis
    Gong, Jing
    Liu, Jiyu
    Hao, Wen
    Nie, Shengdong
    Wang, Shengping
    Peng, Weijun
    PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (13)