COMPUTER-AIDED DETECTION OF PULMONARY NODULES USING GENETIC PROGRAMMING

被引:8
|
作者
Choi, Wook-Jin [1 ]
Choi, Tae-Sun [1 ]
机构
[1] GIST, Sch Informat & Mechatron, Kwangju 500712, South Korea
来源
2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING | 2010年
关键词
HRCT; Pulmonary Nodule; Lung; Nodule detection; CAD development; LUNG NODULES; CT IMAGES; CANCER STATISTICS; DIAGNOSIS; REDUCTION; ALGORITHM;
D O I
10.1109/ICIP.2010.5652369
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes a novel nodule detection method that enhances false positive reduction. Lung region is extracted from CT image sequence using adaptive thresholding and 18-connectedness voxel labelling. In the extracted lung region, nodule candidates are detected using adaptive multiple thresholding and rule based classifier. After that, we extract the 3D and 2D features from nodule candidates. The nodule candidates are then classified using genetic programming (GP) based classifier. In this work, a new fitness function is proposed to generate optimal adaptive classifier. We tested the proposed algorithm by using Lung Imaging Database Consortium (LIDC) database of National Cancer Institute (NCI). The classifier was trained and evaluated using two independent dataset and whole dataset. The proposed method reduced the false positives in nodule candidates and achieved 92% detection rate with 6.5 false positives per scan.
引用
收藏
页码:4353 / 4356
页数:4
相关论文
共 50 条
  • [21] Computer-aided Detection of Small Pulmonary Nodules in Chest Radiographs: An Observer Study
    De Boo, Diederick W.
    Uffmann, Martin
    Weber, Michael
    Bipat, Shandra
    Boorsma, Eelco F.
    Scheerder, Maeke J.
    Freling, Nicole J.
    Schaefer-Prokop, Cornelia M.
    ACADEMIC RADIOLOGY, 2011, 18 (12) : 1507 - 1514
  • [22] Computer-Aided Diagnosis of Pulmonary Nodules in Rheumatoid Arthritis
    Musetescu, Anca Emanuela
    Gherghina, Florin Liviu
    Florescu, Lucian-Mihai
    Streba, Liliana
    Ciurea, Paulina Lucia
    Florescu, Alesandra
    Gheonea, Ioana Andreea
    LIFE-BASEL, 2022, 12 (11):
  • [23] Computer-Aided Detection of Pulmonary Nodules based on SVM in Thoracic CT Images
    Eskandarian, Parinaz
    Bagherzadeh, Jamshid
    2015 7TH CONFERENCE ON INFORMATION AND KNOWLEDGE TECHNOLOGY (IKT), 2015,
  • [24] Fractal texture analysis in computer-aided diagnosis of solitary pulmonary nodules
    Vittitoe, NF
    Baker, JA
    Floyd, CE
    ACADEMIC RADIOLOGY, 1997, 4 (02) : 96 - 101
  • [25] Computer-aided detection of lung nodules using outer surface features
    Demir, Onder
    Camurcu, Ali Yilmaz
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2015, 26 : S1213 - S1222
  • [26] A Comparison of Four Versions of a Computer-aided Detection System for Pulmonary Nodules on Chest Radiographs
    Meziane, Moulay
    Mazzone, Peter
    Novak, Eric
    Lieber, Michael L.
    Lababede, Omar
    Phillips, Michael
    Obuchowski, Nancy A.
    JOURNAL OF THORACIC IMAGING, 2012, 27 (01) : 58 - 64
  • [27] Improved computer-aided detection of pulmonary nodules via deep learning in the sinogram domain
    Yongfeng Gao
    Jiaxing Tan
    Zhengrong Liang
    Lihong Li
    Yumei Huo
    Visual Computing for Industry, Biomedicine, and Art, 2
  • [28] Pulmonary nodules at chest CT: Effect of computer-aided diagnosis on radiologists' detection performance
    Awai, K
    Murao, K
    Ozawa, A
    Komi, M
    Hayakawa, H
    Hori, S
    Nishimura, Y
    RADIOLOGY, 2004, 230 (02) : 347 - 352
  • [29] Computer-aided detection for the identification of pulmonary nodules in pediatric oncology patients: initial experience
    Helm, Emma J.
    Silva, Cicero T.
    Roberts, Heidi C.
    Manson, David
    Seed, Mike T. M.
    Amaral, Joao G.
    Babyn, Paul S.
    PEDIATRIC RADIOLOGY, 2009, 39 (07) : 685 - 693
  • [30] Computer-Aided Detection of Pulmonary Nodules in Computed Tomography Images: Effect on Observer Performance
    Liu, JiaBao
    Wang, Yu
    Zhang, Fa
    Ren, Fei
    Liu, LiHeng
    He, Wen
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2017, 7 (06) : 1205 - 1211