COMPUTER-AIDED DETECTION OF PULMONARY NODULES USING GENETIC PROGRAMMING

被引:8
|
作者
Choi, Wook-Jin [1 ]
Choi, Tae-Sun [1 ]
机构
[1] GIST, Sch Informat & Mechatron, Kwangju 500712, South Korea
来源
2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING | 2010年
关键词
HRCT; Pulmonary Nodule; Lung; Nodule detection; CAD development; LUNG NODULES; CT IMAGES; CANCER STATISTICS; DIAGNOSIS; REDUCTION; ALGORITHM;
D O I
10.1109/ICIP.2010.5652369
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes a novel nodule detection method that enhances false positive reduction. Lung region is extracted from CT image sequence using adaptive thresholding and 18-connectedness voxel labelling. In the extracted lung region, nodule candidates are detected using adaptive multiple thresholding and rule based classifier. After that, we extract the 3D and 2D features from nodule candidates. The nodule candidates are then classified using genetic programming (GP) based classifier. In this work, a new fitness function is proposed to generate optimal adaptive classifier. We tested the proposed algorithm by using Lung Imaging Database Consortium (LIDC) database of National Cancer Institute (NCI). The classifier was trained and evaluated using two independent dataset and whole dataset. The proposed method reduced the false positives in nodule candidates and achieved 92% detection rate with 6.5 false positives per scan.
引用
收藏
页码:4353 / 4356
页数:4
相关论文
共 50 条
  • [1] A new computer-aided detection system for pulmonary nodules
    Tartar, Ahmet
    Kilic, Niyazi
    Olgun, Deniz Cebi
    Akan, Aydin
    2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [2] Computer-Aided Detection of Pulmonary Nodules in Computed Tomography Using ClearReadCT
    Wagner, Anne-Kathrin
    Hapich, Arno
    Psychogios, Marios Nikos
    Teichgraeber, Ulf
    Malich, Ansgar
    Papageorgiou, Ismini
    JOURNAL OF MEDICAL SYSTEMS, 2019, 43 (03)
  • [3] Computer-aided detection of pulmonary nodules using dynamic self-adaptive template matching and a FLDA classifier
    Gong, Jing
    Liu, Ji-yu
    Wang, Li-jia
    Zheng, Bin
    Nie, Sheng-dong
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2016, 32 (12): : 1502 - 1509
  • [4] Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database
    Jacobs, Colin
    van Rikxoort, Eva M.
    Murphy, Keelin
    Prokop, Mathias
    Schaefer-Prokop, Cornelia M.
    van Ginneken, Bram
    EUROPEAN RADIOLOGY, 2016, 26 (07) : 2139 - 2147
  • [5] Computer-aided detection and automated CT volumetry of pulmonary nodules
    Marten, Katharina
    Engelke, Christoph
    EUROPEAN RADIOLOGY, 2007, 17 (04) : 888 - 901
  • [6] Computer-aided detection and automated CT volumetry of pulmonary nodules
    Katharina Marten
    Christoph Engelke
    European Radiology, 2007, 17 : 888 - 901
  • [7] Computer-aided detection of pulmonary nodules based on convolutional neural networks: a review
    Min, Yuqin
    Hu, Liangyun
    Wei, Long
    Nie, Shengdong
    PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (06)
  • [8] Evaluation of a method of computer-aided detection (CAD) of pulmonary nodules at computed tomography
    Foti, G.
    Faccioli, N.
    D'Onofrio, M.
    Contro, A.
    Milazzo, T.
    Mucelli, R. Pozzi
    RADIOLOGIA MEDICA, 2010, 115 (06): : 950 - 961
  • [9] Autonomous Detection of Solitary Pulmonary Nodules on CT Images for Computer-Aided Diagnosis
    Wei Ying
    Jia Tong
    Lin Ming-xiu
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 4054 - 4059
  • [10] Improvement in detection of pulmonary nodules: Digital image processing and computer-aided diagnosis
    MacMahon, H
    RADIOGRAPHICS, 2000, 20 (04) : 1169 - 1177