H3K27me3-rich genomic regions can function as silencers to repress gene expression via chromatin interactions

被引:186
作者
Cai, Yichao [1 ,2 ]
Zhang, Ying [1 ]
Loh, Yan Ping [1 ]
Tng, Jia Qi [1 ]
Lim, Mei Chee [1 ,3 ]
Cao, Zhendong [1 ,4 ]
Raju, Anandhkumar [5 ]
Aiden, Erez Lieberman [6 ]
Li, Shang [3 ,7 ]
Manikandan, Lakshmanan [5 ]
Tergaonkar, Vinay [5 ]
Tucker-Kellogg, Greg [2 ,8 ]
Fullwood, Melissa Jane [1 ,5 ,9 ]
机构
[1] Natl Univ Singapore, Canc Sci Inst Singapore, Singapore, Singapore
[2] Natl Univ Singapore, Dept Biol Sci, Singapore, Singapore
[3] Duke NUS Med Sch, Canc & Stem Cell Biol Programme, Singapore, Singapore
[4] Univ Penn, Dept Canc Biol, Perelman Sch Med, Philadelphia, PA 19104 USA
[5] ASTAR, Inst Mol & Cell Biol, Proteos, Singapore
[6] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
[7] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Physiol, Singapore, Singapore
[8] Natl Univ Singapore, Computat Biol Programme, Singapore, Singapore
[9] Nanyang Technol Univ, Sch Biol Sci, Singapore, Singapore
基金
新加坡国家研究基金会;
关键词
DIFFERENTIAL ANALYSIS; REGULATORY ELEMENTS; SUPER-ENHANCERS; CELL IDENTITY; POLYCOMB; DOMAINS; NPM1; IDENTIFICATION; DISRUPTION; PRINCIPLES;
D O I
10.1038/s41467-021-20940-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The mechanisms underlying gene repression and silencers are poorly understood. Here we investigate the hypothesis that H3K27me3-rich regions of the genome, defined from clusters of H3K27me3 peaks, may be used to identify silencers that can regulate gene expression via proximity or looping. We find that H3K27me3-rich regions are associated with chromatin interactions and interact preferentially with each other. H3K27me3-rich regions component removal at interaction anchors by CRISPR leads to upregulation of interacting target genes, altered H3K27me3 and H3K27ac levels at interacting regions, and altered chromatin interactions. Chromatin interactions did not change at regions with high H3K27me3, but regions with low H3K27me3 and high H3K27ac levels showed changes in chromatin interactions. Cells with H3K27me3-rich regions knockout also show changes in phenotype associated with cell identity, and altered xenograft tumor growth. Finally, we observe that H3K27me3-rich regions-associated genes and long-range chromatin interactions are susceptible to H3K27me3 depletion. Our results characterize H3K27me3-rich regions and their mechanisms of functioning via looping. Mechanisms underlying gene repression and silencers remain poorly understood. Here the authors investigate the role of H3K27me3-rich regions in the genome, as defined from clusters of H3K27me3 peaks, in regulating gene expression via looping.
引用
收藏
页数:22
相关论文
共 90 条
[1]   Long-Range Chromatin Interactions Drive Mutant TERT Promoter Activation [J].
Akincilar, Semih Can ;
Khattar, Ekta ;
Boon, Priscilla Li Shan ;
Unal, Bilal ;
Fullwood, Melissa Jane ;
Tergaonkar, Vinay .
CANCER DISCOVERY, 2016, 6 (11) :1276-1291
[2]   An atlas of active enhancers across human cell types and tissues [J].
Andersson, Robin ;
Gebhard, Claudia ;
Miguel-Escalada, Irene ;
Hoof, Ilka ;
Bornholdt, Jette ;
Boyd, Mette ;
Chen, Yun ;
Zhao, Xiaobei ;
Schmidl, Christian ;
Suzuki, Takahiro ;
Ntini, Evgenia ;
Arner, Erik ;
Valen, Eivind ;
Li, Kang ;
Schwarzfischer, Lucia ;
Glatz, Dagmar ;
Raithel, Johanna ;
Lilje, Berit ;
Rapin, Nicolas ;
Bagger, Frederik Otzen ;
Jorgensen, Mette ;
Andersen, Peter Refsing ;
Bertin, Nicolas ;
Rackham, Owen ;
Burroughs, A. Maxwell ;
Baillie, J. Kenneth ;
Ishizu, Yuri ;
Shimizu, Yuri ;
Furuhata, Erina ;
Maeda, Shiori ;
Negishi, Yutaka ;
Mungall, Christopher J. ;
Meehan, Terrence F. ;
Lassmann, Timo ;
Itoh, Masayoshi ;
Kawaji, Hideya ;
Kondo, Naoto ;
Kawai, Jun ;
Lennartsson, Andreas ;
Daub, Carsten O. ;
Heutink, Peter ;
Hume, David A. ;
Jensen, Torben Heick ;
Suzuki, Harukazu ;
Hayashizaki, Yoshihide ;
Mueller, Ferenc ;
Forrest, Alistair R. R. ;
Carninci, Piero ;
Rehli, Michael ;
Sandelin, Albin .
NATURE, 2014, 507 (7493) :455-+
[3]   3D genome organization in health and disease: emerging opportunities in cancer translational medicine [J].
Babu, Deepak ;
Fullwood, Melissa J. .
NUCLEUS, 2015, 6 (05) :382-393
[4]   Paternal Insulin-like Growth Factor 2 (Igf2) Regulates Stem Cell Activity During Adulthood [J].
Barroca, Vilma ;
Lewandowski, Daniel ;
Jaracz-Ros, Agnieszka ;
Hardouin, Sylvie-Nathalie .
EBIOMEDICINE, 2017, 15 :150-162
[5]   A bivalent chromatin structure marks key developmental genes in embryonic stem cells [J].
Bernstein, BE ;
Mikkelsen, TS ;
Xie, XH ;
Kamal, M ;
Huebert, DJ ;
Cuff, J ;
Fry, B ;
Meissner, A ;
Wernig, M ;
Plath, K ;
Jaenisch, R ;
Wagschal, A ;
Feil, R ;
Schreiber, SL ;
Lander, ES .
CELL, 2006, 125 (02) :315-326
[6]   Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains [J].
Boija, Ann ;
Klein, Isaac A. ;
Sabari, Benjamin R. ;
Dall'Agnese, Alessandra ;
Coffey, Eliot L. ;
Zamudio, Alicia V. ;
Li, Charles H. ;
Shrinivas, Krishna ;
Manteiga, John C. ;
Hannett, Nancy M. ;
Abraham, Brian J. ;
Afeyan, Lena K. ;
Guo, Yang E. ;
Rimel, Jenna K. ;
Fant, Charli B. ;
Schuijers, Jurian ;
Lee, Tong Ihn ;
Taatjes, Dylan J. ;
Young, Richard A. .
CELL, 2018, 175 (07) :1842-+
[7]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[8]   Multiscale 3D Genome Rewiring during Mouse Neural Development [J].
Bonev, Boyan ;
Cohen, Netta Mendelson ;
Szabo, Quentin ;
Fritsch, Lauriane ;
Papadopoulos, Giorgio L. ;
Lubling, Yaniv ;
Xu, Xiaole ;
Lv, Xiaodan ;
Hugnot, Jean-Philippe ;
Tanay, Amos ;
Cavalli, Giacomo .
CELL, 2017, 171 (03) :557-+
[9]   Transcriptional Addiction in Cancer [J].
Bradner, James E. ;
Hnisz, Denes ;
Young, Richard A. .
CELL, 2017, 168 (04) :629-643
[10]   Near-optimal probabilistic RNA-seq quantification [J].
Bray, Nicolas L. ;
Pimentel, Harold ;
Melsted, Pall ;
Pachter, Lior .
NATURE BIOTECHNOLOGY, 2016, 34 (05) :525-527