Eight-vertex model and non-stationary Lame equation

被引:39
作者
Bazhanov, VV [1 ]
Mangazeev, VV [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys Sci & Engn, Dept Theoret Phys, Canberra, ACT 0200, Australia
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2005年 / 38卷 / 08期
关键词
D O I
10.1088/0305-4470/38/8/L01
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the ground state eigenvalues of Baxter's Q-operator for the eight-vertex model in a special case when it describes the off-critical deformation of the Delta = -1/2 six-vertex model. We show that these eigenvalues satisfy a non-stationary Schrodinger equation with the time-dependent potential given by the Weierstrass elliptic delta-function where the modular parameter tau plays the role of (imaginary) time. In the scaling limit, the equation transforms into a 'nonstationary Mathieu equation' for the vacuum eigenvalues of the Q-operators in the finite-volume massive sine-Gordon model at the super-symmetric point, which is closely related to the theory of dilute polymers on a cylinder and the Painleve III equation.
引用
收藏
页码:L145 / L153
页数:9
相关论文
共 34 条
[1]   ZERO-FIELD SUSCEPTIBILITY OF 2-DIMENSIONAL ISING-MODEL NEAR TC [J].
BAROUCH, E ;
MCCOY, BM ;
WU, TT .
PHYSICAL REVIEW LETTERS, 1973, 31 (23) :1409-1411
[2]   The quantum symmetric XXZ chain at Δ=-1/2, alternating-sign matrices and plane partitions [J].
Batchelor, MT ;
de Gier, J ;
Nienhuis, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (19) :L265-L270
[3]  
Baxter R.J., 1989, Adv. Stud. Pure Math., V19, P95
[4]   PARTITION-FUNCTION OF 8-VERTEX LATTICE MODEL [J].
BAXTER, RJ .
ANNALS OF PHYSICS, 1972, 70 (01) :193-&
[5]   HARD HEXAGONS - EXACT SOLUTION [J].
BAXTER, RJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (03) :L61-L70
[6]  
Bazhanov VV, 2003, ADV THEOR MATH PHYS, V7, P711
[7]   Integrable structure of conformal field theory - II. Q-operator and DDV equation [J].
Bazhanov, VV ;
Lukyanov, SL ;
Zamolodchikov, AB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 190 (02) :247-278
[8]   Quantum field theories in finite volume: Excited state energies [J].
Bazhanov, VV ;
Lukyanov, SL ;
Zamolodchikov, AB .
NUCLEAR PHYSICS B, 1997, 489 (03) :487-531
[9]   Spectral determinants for Schrodinger equation and Q-operators of conformal field theory [J].
Bazhanov, VV ;
Lukyanov, SL ;
Zamolodchikov, AB .
JOURNAL OF STATISTICAL PHYSICS, 2001, 102 (3-4) :567-576
[10]  
BAZHANOV VV, 2005, 8 VERTEX MODEL PARTI