Multiple channels local binary pattern for color texture representation and classification

被引:29
作者
Shu, Xin [1 ]
Song, Zhigang [1 ]
Shi, Jinlong [1 ]
Huang, Shucheng [1 ]
Wu, Xiao-Jun [2 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Comp Sci, Zhenjiang 212003, Jiangsu, Peoples R China
[2] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Texture descriptor; Texture classification; Color texture feature; Local binary pattern; Multiple channels local binary pattern; IMAGE RETRIEVAL; SCENE; DESCRIPTOR; SPACE; SHAPE;
D O I
10.1016/j.image.2021.116392
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Image texture description and analysis technology are the basis of many practical applications in pattern recog-nition. This paper presents a novel and simple, yet powerful method, namely multiple channels local binary pattern (MCLBP), which is the natural extension and development of local binary pattern (LBP) algorithm for color texture representation and classification. MCLBP combines single-channel texture characteristics with multi-channel color information, which reflects the correlations and dependency among different channels. Furthermore, we decompose local color differences into color-difference signs and color-difference magnitudes and MCLBP is extended to MCLBP+M. Then, the resulted image descriptor is a histogram representation, which fuses rich features including color difference sign and color difference magnitude. Comprehensive experiments conducted on five benchmark databases, including Outex, KTH-TIPS, CUReT, STex and KTH-TIPS2-b clearly demonstrate that our proposed method outperforms most of the existed color texture features in terms of classification accuracy. Particularly, our method achieves the best classification performance in CUReT and STex databases.
引用
收藏
页数:11
相关论文
共 58 条
[1]   Face recognition using color local binary pattern from mutually independent color channels [J].
Anbarjafari, Gholamreza .
EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2013,
[2]   Color texture analysis based on fractal descriptors [J].
Backes, Andre Ricardo ;
Casanova, Dalcimar ;
Bruno, Odemir Martinez .
PATTERN RECOGNITION, 2012, 45 (05) :1984-1992
[3]   LBP-Motivated Colour Texture Classification [J].
Bello-Cerezo, Raquel ;
Fieguth, Paul ;
Bianconi, Francesco .
COMPUTER VISION - ECCV 2018 WORKSHOPS, PT IV, 2019, 11132 :517-533
[4]   Face Spoofing Detection Using Colour Texture Analysis [J].
Boulkenafet, Zinelabidine ;
Komulainen, Jukka ;
Hadid, Abdenour .
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2016, 11 (08) :1818-1830
[5]   Texture analysis using fractal descriptors estimated by the mutual interference of color channels [J].
Casanova, D. ;
Florindo, J. B. ;
Falvo, M. ;
Bruno, O. M. .
INFORMATION SCIENCES, 2016, 346 :58-72
[6]   Influence of normalization and color space to color texture classification [J].
Cernadas, E. ;
Fernandez-Delgado, M. ;
Gonzalez-Rufino, E. ;
Carrion, P. .
PATTERN RECOGNITION, 2017, 61 :120-138
[7]   Full ranking as local descriptor for visual recognition: A comparison of distance metrics on Sn [J].
Chan, Chi Ho ;
Yan, Fei ;
Kitt, Josef ;
Mikolajczyk, Krystian .
PATTERN RECOGNITION, 2015, 48 (04) :1328-1336
[8]  
Chao Zhu, 2010, Proceedings of the 2010 20th International Conference on Pattern Recognition (ICPR 2010), P3065, DOI 10.1109/ICPR.2010.751
[9]   Color Local Texture Features for Color Face Recognition [J].
Choi, Jae Young ;
Ro, Yong Man ;
Plataniotis, Konstantinos N. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (03) :1366-1380
[10]   Deep Filter Banks for Texture Recognition, Description, and Segmentation [J].
Cimpoi, Mircea ;
Maji, Subhransu ;
Kokkinos, Iasonas ;
Vedaldi, Andrea .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2016, 118 (01) :65-94