Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants

被引:20
作者
Gonnet, Pedro [1 ]
机构
[1] ETH, Zurich, Switzerland
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 2010年 / 37卷 / 03期
基金
瑞士国家科学基金会;
关键词
Algorithms; Performance; Reliability; Adaptive quadrature; interpolation; orthogonal polynomials; error estimation; CLENSHAW-CURTIS QUADRATURE; INTEGRATION FORMULAS; DEFINITE INTEGRALS; GAUSS QUADRATURE; ERROR ESTIMATION; ALGORITHM; SYSTEMS;
D O I
10.1145/1824801.1824804
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present two new adaptive quadrature routines. Both routines differ from previously published algorithms in many aspects, most significantly in how they represent the integrand, how they treat nonnumerical values of the integrand, how they deal with improper divergent integrals, and how they estimate the integration error. The main focus of these improvements is to increase the reliability of the algorithms without significantly impacting their efficiency. Both algorithms are implemented in MATLAB and tested using both the "families" suggested by Lyness and Kaganove and the battery test used by Gander and Gautschi and Kahaner. They are shown to be more reliable, albeit in some cases less efficient, than other commonly-used adaptive integrators.
引用
收藏
页数:32
相关论文
共 60 条
  • [1] [Anonymous], 1997, Numerical analysis: An introduction
  • [2] [Anonymous], 1963, Proc. Symp. Appl. Math., DOI DOI 10.1090/PSAPM/015/0174177
  • [3] ERROR ESTIMATION IN AUTOMATIC QUADRATURE ROUTINES
    BERNTSEN, J
    ESPELID, TO
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1991, 17 (02): : 233 - 252
  • [4] SOLUTION OF VANDERMONDE SYSTEMS OF EQUATIONS
    BJORCK, A
    PEREYRA, V
    [J]. MATHEMATICS OF COMPUTATION, 1970, 24 (112) : 893 - &
  • [5] Casaletto J., 1969, ACM SIGNUM NEWSLETTE, V4, P30
  • [6] Davis P.J., 1984, NUMERICAL INTEGRATIO, V2nd
  • [7] de Boor C., 1971, MATH SOFTWARE, P201
  • [8] de Doncker E., 1978, SIGNUM Newsletter, V13, P12, DOI 10.1145/1053402.1053403
  • [9] Eaton J.W., 2002, GNU Octave Manual
  • [10] Algorithm 868: Globally doubly adaptive quadrature - Reliable Matlab codes
    Espelid, Terje O.
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2007, 33 (03): : E1 - E21