Gaussian Regularization of the Pseudospectrum and Davies' Conjecture

被引:11
作者
Banks, Jess [1 ,2 ]
Kulkarni, Archit [1 ,3 ]
Mukherjee, Satyaki [1 ,4 ]
Srivastava, Nikhil [1 ,5 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Math, 1065 Evans Hall 3840, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Math, 1075 Evans Hall 3840, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Math, 1039 Evans Hall 3840, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Math, 1015 Evans Hall 3840, Berkeley, CA 94720 USA
关键词
COMPARISON-THEOREMS; CONDITION NUMBERS; LAGUERRE PROCESS; MATRIX; EIGENVALUES; STATISTICS; FINITE;
D O I
10.1002/cpa.22017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A matrix A is an element of Double-struck capital Cnxn is diagonalizable if it has a basis of linearly independent eigenvectors. Since the set of nondiagonalizable matrices has measure zero, every A is an element of Double-struck capital Cnxn is the limit of diagonalizable matrices. We prove a quantitative version of this fact conjectured by E. B. Davies: for each delta is an element of("0,1,) every matrix A is an element of Double-struck capital Cnxn is at least delta parallel to A parallel to-close to one whose eigenvectors have condition number at worst cn/delta, for some cn depending only on n. We further show that the dependence on delta cannot be improved to 1/delta p for any constant p<1. Our proof uses tools from random matrix theory to show that the pseudospectrum of A can be regularized with the addition of a complex Gaussian perturbation. Along the way, we explain how a variant of a theorem of Sniady implies a conjecture of Sankar, Spielman, and Teng on the optimal constant for smoothed analysis of condition numbers. (c) 2021 Wiley Periodicals, Inc.
引用
收藏
页码:2114 / +
页数:19
相关论文
共 41 条
[1]   NEW ALGORITHMS FOR COMPUTING THE MATRIX SINE AND COSINE SEPARATELY OR SIMULTANEOUSLY [J].
Al-Mohy, Awad H. ;
Higham, Nicholas J. ;
Relton, Samuel D. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (01) :A456-A487
[2]   COMPUTING THE FRECHET DERIVATIVE OF THE MATRIX LOGARITHM AND ESTIMATING THE CONDITION NUMBER [J].
Al-Mohy, Awad H. ;
Higham, Nicholas J. ;
Relton, Samuel D. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (04) :C394-C410
[3]  
Anderson G. W., 2010, CAMBRIDGE STUDIES AD, V118
[4]  
Basak A., 2018, ARXIV181206207MATHPR ARXIV181206207MATHPR
[5]   REGULARIZATION OF NON-NORMAL MATRICES BY GAUSSIAN NOISE-THE BANDED TOEPLITZ AND TWISTED TOEPLITZ CASES [J].
Basak, Anirban ;
Paquette, Elliot ;
Zeitouni, Ofer .
FORUM OF MATHEMATICS SIGMA, 2019, 7
[6]  
Bauer F.L., 1960, NUMER MATH, V2, P137, DOI [10.1007/BF01386217, 10.1007/bf01386217]
[7]   Eigenvectors of non normal random matrices [J].
Benaych-Georges, Florent ;
Zeitouni, Ofer .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23
[8]  
Bourgade P., 2018, ARXIV180101219MATHPR ARXIV180101219MATHPR
[9]  
Bru M. F., 1991, J THEOR PROB, V4, P725, DOI [DOI 10.1007/BF01259552, /10.1007/BF01259552]
[10]   DIFFUSIONS OF PERTURBED PRINCIPAL COMPONENT ANALYSIS [J].
BRU, MF .
JOURNAL OF MULTIVARIATE ANALYSIS, 1989, 29 (01) :127-136