Sequential coupling transport for the dark current of quantum dots-in-well infrared photodetectors

被引:25
作者
Lin, L. [1 ]
Zhen, H. L. [1 ]
Li, N. [1 ]
Lu, W. [1 ]
Weng, Q. C. [2 ]
Xiong, D. Y. [2 ]
Liu, F. Q. [3 ]
机构
[1] Chinese Acad Sci, Natl Lab Infrared Phys, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China
[2] E China Normal Univ, Key Lab Polarized Mat & Devices, Shanghai 200241, Peoples R China
[3] Chinese Acad Sci, Inst Semicond, Beijing 100083, Peoples R China
基金
美国国家科学基金会;
关键词
DETECTORS;
D O I
10.1063/1.3517253
中图分类号
O59 [应用物理学];
学科分类号
摘要
The dark current characteristics and temperature dependence for quantum dot infrared photodetectors have been investigated by comparing the dark current activation energies between two samples with identical structure of the dots-in-well in nanoscale but different microscale n-i-n environments. A sequential coupling transport mechanism for the dark current between the nanoscale and the microscale processes is proposed. The dark current is determined by the additive mode of two activation energies: E-a,E-micro from the built-in potential in the microscale and E-a,E-nano related to the thermally assisted tunneling in nanoscale. The activation energies E-a,E-micro and E-a,E-nano decrease exponentially and linearly with increasing applied electric field, respectively. (C) 2010 American Institute of Physics. [doi:10.1063/1.3517253]
引用
收藏
页数:3
相关论文
共 37 条
[11]   Quantum well infrared photodetectors for low background applications [J].
Bandara, S ;
Gunapala, S ;
Rafol, S ;
Ting, D ;
Liu, J ;
Mumolo, J ;
Trinh, T ;
Liu, AWK ;
Fastenau, JM .
INFRARED PHYSICS & TECHNOLOGY, 2001, 42 (3-5) :237-242
[12]   Dark current and photoresponse characteristics of extended wavelength infrared photodetectors [J].
Chauhan, D. ;
Perera, A. G. U. ;
Li, L. H. ;
Chen, L. ;
Linfield, E. H. .
JOURNAL OF APPLIED PHYSICS, 2017, 122 (02)
[13]   Simulation of optical coupling in quantum-cell infrared photodetectors [J].
Masalkar, P ;
Nishino, H ;
Yamamoto, K ;
Miyamoto, Y ;
Fujii, T .
PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES VII, 1999, 3625 :552-559
[14]   Modeling of Polarization-Selective Light-Coupling in Quantum Well Infrared Photodetectors with Small Pixel Sizes [J].
Bendrot, Linnea ;
Delmas, Marie ;
Pettersson, Hakan ;
Fu, Ying ;
Ivanov, Ruslan ;
Visser, Dennis ;
Evans, Dean ;
Rihtnesberg, David ;
Buldu, Dilara G. ;
Smuk, Anton ;
Sehlin, Susann ;
Almqvist, Susanne ;
Englund, Maria ;
Tinghag, Pia ;
Costard, Eric ;
Hoglund, Linda .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2024,
[15]   Coupling Efficiency of Lamellar Gratings for Terahertz Quantum-well Photodetectors [J].
Zhang, R. ;
Guo, X. G. ;
Cao, J. C. .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2012, 60 (08) :1233-1237
[16]   Physical model of depletion and accumulation in quantum-well infrared photodetectors [J].
Pan, JL ;
Fonstad, CG .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1999, 35 (11) :1673-1684
[17]   MBE growth of ZnCdSe/ZnCdMgSe quantum-well infrared photodetectors [J].
Shen, Aidong ;
Ravikumar, Arvind Pawan ;
Chen, Guopeng ;
Zhao, Kuaile ;
Alfaro-Martinez, Adrian ;
Garcia, Thor ;
de Jesus, Joel ;
Tamargo, Maria C. ;
Gmachl, Claire .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2013, 31 (03)
[18]   Highly efficient metallic optical incouplers for quantum well infrared photodetectors [J].
Liu, Long ;
Chen, Yu ;
Huang, Zhong ;
Du, Wei ;
Zhan, Peng ;
Wang, Zhenlin .
SCIENTIFIC REPORTS, 2016, 6
[19]   Surface dark current mechanisms in III-V infrared photodetectors [Invited] [J].
Marozas, B. T. ;
Hughes, W. D. ;
Du, X. ;
Sidor, D. E. ;
Savich, G. R. ;
Wicks, G. W. .
OPTICAL MATERIALS EXPRESS, 2018, 8 (06) :1419-1424
[20]   Demonstration of InAs/InGaAs/GaAs Quantum Dots-in-a-Well Mid-Wave Infrared Photodetectors Grown on Silicon Substrate [J].
Chen, Wei ;
Deng, Zhuo ;
Guo, Daqian ;
Chen, Yaojiang ;
Mazur, Yuriy, I ;
Maidaniuk, Yurii ;
Benamara, Mourad ;
Salamo, Gregory J. ;
Liu, Huiyun ;
Wu, Jiang ;
Chen, Baile .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (13) :2572-2581