Sequential coupling transport for the dark current of quantum dots-in-well infrared photodetectors

被引:25
作者
Lin, L. [1 ]
Zhen, H. L. [1 ]
Li, N. [1 ]
Lu, W. [1 ]
Weng, Q. C. [2 ]
Xiong, D. Y. [2 ]
Liu, F. Q. [3 ]
机构
[1] Chinese Acad Sci, Natl Lab Infrared Phys, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China
[2] E China Normal Univ, Key Lab Polarized Mat & Devices, Shanghai 200241, Peoples R China
[3] Chinese Acad Sci, Inst Semicond, Beijing 100083, Peoples R China
基金
美国国家科学基金会;
关键词
DETECTORS;
D O I
10.1063/1.3517253
中图分类号
O59 [应用物理学];
学科分类号
摘要
The dark current characteristics and temperature dependence for quantum dot infrared photodetectors have been investigated by comparing the dark current activation energies between two samples with identical structure of the dots-in-well in nanoscale but different microscale n-i-n environments. A sequential coupling transport mechanism for the dark current between the nanoscale and the microscale processes is proposed. The dark current is determined by the additive mode of two activation energies: E-a,E-micro from the built-in potential in the microscale and E-a,E-nano related to the thermally assisted tunneling in nanoscale. The activation energies E-a,E-micro and E-a,E-nano decrease exponentially and linearly with increasing applied electric field, respectively. (C) 2010 American Institute of Physics. [doi:10.1063/1.3517253]
引用
收藏
页数:3
相关论文
共 37 条
[1]   Progress and Prospects for Quantum Dots in a Well Infrared Photodetectors [J].
Vandervelde, Thomas E. ;
Krishna, Sanjay .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (03) :1450-1460
[2]   Offset in the dark current characteristics of photovoltaic double barrier quantum well infrared photodetectors [J].
Luna, E ;
Guzmán, A ;
Muñoz, E .
INFRARED PHYSICS & TECHNOLOGY, 2005, 47 (1-2) :22-28
[3]   Optical coupling mechanisms in Quantum Well Infrared Photodetectors [J].
Bandara, S ;
Gunapala, S ;
Liu, J ;
Hong, W ;
Park, J .
PHOTODETECTORS: MATERIALS AND DEVICES II, 1997, 2999 :103-108
[4]   Resonant Tunneling Barriers in Quantum Dots-in-a-Well Infrared Photodetectors [J].
Barve, Ajit ;
Shao, Jiayi ;
Sharma, Yagya D. ;
Vandervelde, Thomas E. ;
Sankalp, Krit ;
Lee, Sang Jun ;
Noh, Sam Kyu ;
Krishna, Sanjay .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2010, 46 (07) :1105-1114
[5]   An intermediate-band-assisted avalanche multiplication in InAs/InGaAs quantum dots-in-well infrared photodetector [J].
Lin, L. ;
Zhen, H. L. ;
Zhou, X. H. ;
Li, N. ;
Lu, W. ;
Liu, F. Q. .
APPLIED PHYSICS LETTERS, 2011, 98 (07)
[6]   Two dimensional periodic grating light coupling in quantum well infrared photodetectors [J].
Bandara, SV ;
Gunapala, SD ;
Liu, JK ;
Hong, W ;
Park, JS .
INFRARED TECHNOLOGY AND APPLICATIONS XXIII, PTS 1 AND 2, 1997, 3061 :758-763
[7]   Progress in enhanced quantum well infrared photodetectors [J].
Mitra, P ;
Brouns, A ;
Case, F ;
McCurdy, J .
INFRARED TECHNOLOGY AND APPLICATIONS XXV111, PTS 1 AND 2, 2003, 4820 :282-288
[8]   Quantum well infrared photodetectors: present and future [J].
Gueriaux, Vincent ;
de I'Isle, Nadia Briere ;
Berurier, Arnaud ;
Huet, Odile ;
Manissadjian, Alain ;
Facoetti, Huges ;
Marcadet, Xavier ;
Carras, Mathieu ;
Trinite, Virginie ;
Nedelcu, Alexandru .
OPTICAL ENGINEERING, 2011, 50 (06)
[9]   LWIR multispectral quantum well infrared photodetectors [J].
Mitra, P ;
Case, FC ;
McCurdy, JH .
INFRARED TECHNOLOLGY AND APPLICATIONS XXIX, 2003, 5074 :726-734
[10]   Quantum well infrared photodetectors for low background applications [J].
Bandara, S ;
Gunapala, S ;
Rafol, S ;
Ting, D ;
Liu, J ;
Mumolo, J ;
Trinh, T .
INFRARED DETECTORS AND FOCAL PLANE ARRAYS VII, 2002, 4721 :159-164