共 50 条
- [21] Elliptic Curves of Type y2 = x3 - 3pqx Having Ranks Zero and One MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (01): : 67 - 76
- [23] An exact upper bound estimate for the number of integer points on the elliptic curves y2 = x3 - pkx JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
- [24] An exact upper bound estimate for the number of integer points on the elliptic curves y2=x3−pkx Journal of Inequalities and Applications, 2014
- [25] On the family of elliptic curves y2=x3-m2x+p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{y^2=x^3-m^2x+p^2}$$\end{document} Proceedings - Mathematical Sciences, 2018, 128 (5)
- [26] Integral points on the elliptic curve Epq: y2 = x3 + (pq − 12) x − 2(pq − 8) Indian Journal of Pure and Applied Mathematics, 2019, 50 : 343 - 352
- [28] Integer points on the curve Y2 = X3 ± pkX MATHEMATICS OF COMPUTATION, 2006, 75 (255) : 1493 - 1505
- [29] The upper bound estimate of the number of integer points on elliptic curves y2=x3+p2rx Journal of Inequalities and Applications, 2014
- [30] On the Birch-Swinnerton-Dyer conjecture of elliptic curves ED:y2 = x3-D2x ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2000, 16 (02): : 229 - 236