Physics considerations for laser-plasma linear colliders

被引:276
作者
Schroeder, C. B. [1 ]
Esarey, E. [1 ]
Geddes, C. G. R. [1 ]
Benedetti, C. [1 ]
Leemans, W. P. [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
关键词
ELECTRON-BEAMS; WAKE-FIELD; INJECTION; ACCELERATOR; PULSES; DRIVEN; WAVES;
D O I
10.1103/PhysRevSTAB.13.101301
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Physics considerations for a next-generation linear collider based on laser-plasma accelerators are discussed. The ultrahigh accelerating gradient of a laser-plasma accelerator and short laser coupling distance between accelerator stages allows for a compact linac. Two regimes of laser-plasma acceleration are discussed. The highly nonlinear regime has the advantages of higher accelerating fields and uniform focusing forces, whereas the quasilinear regime has the advantage of symmetric accelerating properties for electrons and positrons. Scaling of various accelerator and collider parameters with respect to plasma density and laser wavelength are derived. Reduction of beamstrahlung effects implies the use of ultrashort bunches of moderate charge. The total linac length scales inversely with the square root of the plasma density, whereas the total power scales proportional to the square root of the density. A 1 TeV center-of-mass collider based on stages using a plasma density of 10(17) cm(-3) requires tens of J of laser energy per stage (using 1 mu m wavelength lasers) with tens of kHz repetition rate. Coulomb scattering and synchrotron radiation are examined and found not to significantly degrade beam quality. A photon collider based on laser-plasma accelerated beams is also considered. The requirements for the scattering laser energy are comparable to those of a single laser-plasma accelerator stage.
引用
收藏
页数:11
相关论文
共 46 条
[1]   Structure of the wake field in plasma channels [J].
Andreev, NE ;
Gorbunov, LM ;
Kirsanov, VI ;
Nakajima, K ;
Ogata, A .
PHYSICS OF PLASMAS, 1997, 4 (04) :1145-1153
[2]   The photon collider at TESLA [J].
Badelek, B ;
Blöchinger, C ;
Blümlein, J ;
Boos, E ;
Brinkmann, R ;
Burkhardt, H ;
Bussey, P ;
Carimalo, C ;
Chyla, J ;
Çiftçi, AK ;
Decking, W ;
De Roeck, A ;
Fadin, V ;
Ferrario, M ;
Finch, A ;
Fraas, H ;
Franke, F ;
Galynskii, M ;
Gamp, A ;
Ginzburg, I ;
Godbole, R ;
Gorbunov, DS ;
Gounaris, G ;
Hagiwara, K ;
Han, L ;
Heuer, RD ;
Heusch, C ;
Illana, J ;
Ilyin, V ;
Jankowski, P ;
Jiang, Y ;
Jikia, G ;
Jönsson, L ;
Kalachnikow, M ;
Kapusta, F ;
Klanner, R ;
Klassen, M ;
Kobayashi, K ;
Kon, T ;
Kotkin, G ;
Krämer, M ;
Krawczyk, M ;
Kuang, YP ;
Kuraev, E ;
Kwiecinski, J ;
Leenen, M ;
Levchuk, M ;
Ma, WF ;
Martyn, H ;
Mayer, T .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2004, 19 (30) :5097-5186
[3]   Particle injection into the wave acceleration phase due to nonlinear wake wave breaking [J].
Bulanov, S ;
Naumova, N ;
Pegoraro, F ;
Sakai, J .
PHYSICAL REVIEW E, 1998, 58 (05) :R5257-R5260
[4]   Guiding of high-intensity laser pulses with a hydrogen-filled capillary discharge waveguide [J].
Butler, A ;
Spence, DJ ;
Hooker, SM .
PHYSICAL REVIEW LETTERS, 2002, 89 (18) :1-185003
[5]   Clean beams from laser wake-field accelerators via optical injection with a cleanup pulse [J].
Cary, JR ;
Giacone, RE ;
Nieter, C ;
Bruhwiler, DL .
PHYSICS OF PLASMAS, 2005, 12 (05)
[6]  
Chao A.W., 1999, Handbook of Accelerator Physics and Engineering
[7]  
Cormier-Michel E., 2009, P 10 INT COMP ACC PH
[8]   The plasma mirror - A subpicosecond optical switch for ultrahigh power lasers [J].
Dromey, B ;
Kar, S ;
Zepf, M ;
Foster, P .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (03) :645-649
[9]  
Dugan G, 2004, AIP CONF PROC, V737, P29, DOI 10.1063/1.1842533
[10]  
DUGAN G, COMMUNICATION