Electrospun activated carbon nanofibers for supercapacitor electrodes

被引:84
作者
Zhi, Mingjia [1 ]
Liu, Suhua [1 ]
Hong, Zhanglian [1 ]
Wu, Nianqiang [2 ]
机构
[1] Zhejiang Univ, Dept Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
[2] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA
关键词
ELECTROCHEMICAL CAPACITORS; NANO-CABLES; GRAPHENE; COMPOSITE; OXIDE;
D O I
10.1039/c4ra05512h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Porous activated carbon nanofibers have been prepared by electrospinning a H3PO4-containing polyacrylonitrile precursor. A small amount of H3PO4 (<1 wt%) serves as the activation agent during carbonization of the nanofibers. The activated carbon nanofibers have a large surface area (similar to 709 m(2) g(-1)) and high porosity (0.356 cm(3) g(-1)). A high specific capacitance of 156 F g(-1) (at 0.5 A g(-1)) is obtained at a 1:10 mass ratio of H3PO4 to polyacrylonitrile. The energy density of the supercapacitor with the activated carbon nanofibers as the electrodes reaches 10.98 Wh kg(-1) at a power density of 10 kW kg(-1). This is similar to 9 fold larger than that of carbon nanofibers without H3PO4 because the H3PO4-based activation process significantly increases both the micropore volume and the volume ratio of mesopores to micropores.
引用
收藏
页码:43619 / 43623
页数:5
相关论文
共 27 条
[11]   Fingerprinting photoluminescence of functional groups in graphene oxide [J].
Li, Ming ;
Cushing, Scott K. ;
Zhou, Xuejiao ;
Guo, Shouwu ;
Wu, Nianqiang .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (44) :23374-23379
[12]   Tin oxide (SnO2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures: Controlled fabrication and high capacitive behavior [J].
Mu, Jingbo ;
Chen, Bin ;
Guo, Zengcai ;
Zhang, Mingyi ;
Zhang, Zhenyi ;
Shao, Changlu ;
Liu, Yichun .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2011, 356 (02) :706-712
[13]   High power density electrodes for carbon supercapacitor applications [J].
Portet, C ;
Taberna, PL ;
Simon, P ;
Flahaut, E ;
Laberty-Robert, C .
ELECTROCHIMICA ACTA, 2005, 50 (20) :4174-4181
[14]   High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper [J].
Ra, E. J. ;
Raymundo-Pinero, E. ;
Lee, Y. H. ;
Beguin, F. .
CARBON, 2009, 47 (13) :2984-2992
[15]   Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes [J].
Raymundo-Pinero, E. ;
Kierzek, K. ;
Machnikowski, J. ;
Beguin, F. .
CARBON, 2006, 44 (12) :2498-2507
[16]   Materials for electrochemical capacitors [J].
Simon, Patrice ;
Gogotsi, Yury .
NATURE MATERIALS, 2008, 7 (11) :845-854
[17]   Interfacial capacitance of single layer graphene [J].
Stoller, Meryl D. ;
Magnuson, Carl W. ;
Zhu, Yanwu ;
Murali, Shanthi ;
Suk, Ji Won ;
Piner, Richard ;
Ruoff, Rodney S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (11) :4685-4689
[18]   Symmetric self-hybrid supercapacitor consisting of multiwall carbon nanotubes and co-al layered double hydroxides [J].
Su, Linghao ;
Zhang, Xiaogang ;
Yuan, Changzhou ;
Gao, Bo .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (02) :A110-A114
[19]   A review of electrode materials for electrochemical supercapacitors [J].
Wang, Guoping ;
Zhang, Lei ;
Zhang, Jiujun .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (02) :797-828
[20]   Rational synthesis of MnO2/conducting polypyrrole@carbon nanofiber triaxial nano-cables for high-performance supercapacitors [J].
Wang, Jian-Gan ;
Yang, Ying ;
Huang, Zheng-Hong ;
Kang, Feiyu .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (33) :16943-16949