Wiener Process Effects on the Solutions of the Fractional (2+1)-Dimensional Heisenberg Ferromagnetic Spin Chain Equation

被引:10
作者
Mohammed, Wael W. [1 ,2 ]
Al-Askar, Farah M. [3 ]
Cesarano, Clemente [4 ]
Botmart, Thongchai [5 ]
El-Morshedy, M. [6 ,7 ]
机构
[1] Univ Hail, Fac Sci, Dept Math, Hail 2440, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[3] Princess Nourah Bint Abdulrahman Univ, Dept Math Sci, Coll Sci, POB 84428, Riyadh 11671, Saudi Arabia
[4] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele II 39, I-00186 Rome, Italy
[5] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
[6] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Al Kharj, Dept Math, Al Kharj 11942, Saudi Arabia
[7] Mansoura Univ, Fac Sci, Dept Stat & Comp Sci, Mansoura 35516, Egypt
关键词
fractional Heisenberg ferromagnetic equation; stochastic Heisenberg ferromagnetic equation; Wiener process; Jacobi elliptic function method; TRAVELING-WAVE SOLUTIONS; SOLITONS;
D O I
10.3390/math10122043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The stochastic fractional (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation (SFHFSCE), which is driven in the Stratonovich sense by a multiplicative Wiener process, is considered here. The analytical solutions of the SFHFSCE are attained by utilizing the Jacobi elliptic function method. Various kinds of analytical fractional stochastic solutions, for instance, the elliptic functions, are obtained. Physicists can utilize these solutions to understand a variety of important physical phenomena because magnetic solitons have been categorized as one of the interesting groups of non-linear excitations representing spin dynamics in semi-classical continuum Heisenberg systems. To study the impact of the Wiener process on these solutions, the 3D and 2D surfaces of some achieved exact fractional stochastic solutions are plotted.
引用
收藏
页数:9
相关论文
共 36 条
[1]   The Influence of Noise on the Solutions of Fractional Stochastic Bogoyavlenskii Equation [J].
Al-Askar, Farah M. ;
Mohammed, Wael W. ;
Albalahi, Abeer M. ;
El-Morshedy, Mahmoud .
FRACTAL AND FRACTIONAL, 2022, 6 (03)
[2]   The Impact of the Wiener Process on the Analytical Solutions of the Stochastic (2+1)-Dimensional Breaking Soliton Equation by Using Tanh-Coth Method [J].
Al-Askar, Farah M. ;
Mohammed, Wael W. ;
Albalahi, Abeer M. ;
El-Morshedy, Mahmoud .
MATHEMATICS, 2022, 10 (05)
[3]  
[Anonymous], 2012, Numerical solution of SDE through computer experiments
[4]  
Bashar MH., 2021, Partial Differential Equations in Applied Mathematics, V4, P100040, DOI [10.1016/j.padiff.2021.100040, DOI 10.1016/J.PADIFF.2021.100040]
[5]   Dark, bright and other soliton solutions to the Heisenberg ferromagnetic spin chain equation [J].
Bulut, Hasan ;
Sulaiman, Tukur Abdulkadir ;
Baskonus, Haci Mehmet .
SUPERLATTICES AND MICROSTRUCTURES, 2018, 123 :12-19
[6]   Bifurcation and new traveling wave solutions for (2+1)-dimensional nonlinear Nizhnik-Novikov-Veselov dynamical equation [J].
Elbrolosy, M. E. ;
Elmandouh, A. A. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (06)
[7]   Bifurcation and new traveling wave solutions for the 2D Ginzburg-Landau equation [J].
Elmandouh, A. A. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (08)
[8]   New Traveling Wave Solutions for the (2+1)-Dimensional Heisenberg Ferromagnetic Spin Chain Equation [J].
Han, Tianyong ;
Wen, Jiajin ;
Li, Zhao ;
Yuan, Jun .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
[9]   An algorithmic introduction to numerical simulation of stochastic differential equations [J].
Higham, DJ .
SIAM REVIEW, 2001, 43 (03) :525-546