Engineering Durable Superhydrophobic Photocatalyst for Oil-Water Separation and Degradation of Chemical Pollutants

被引:3
|
作者
Zhu, Haiguang [1 ]
Chen, Long [1 ]
Dou, Xinyue [1 ]
Liu, Yong [1 ]
Yuan, Xun [1 ]
机构
[1] Qingdao Univ Sci & Technol QUST, Coll Mat Sci & Engn, 53 Zhengzhou Rd, Qingdao 266042, Peoples R China
来源
CHEMISTRYSELECT | 2021年 / 6卷 / 29期
基金
中国国家自然科学基金;
关键词
semiconductors; photocatalysis; oil-water separation; pollutant degradation; superhydrophobicity; GRAPHENE FOAM; EFFICIENT; ABSORPTION; MECHANISMS; RECOVERY; OXYGEN;
D O I
10.1002/slct.202100925
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Wastewater treatment, especially for those containing insoluble oils and soluble chemical pollutants, has been a major concern in the field of environmental protection. Materials integrating both hydrophobicity and photocatalytic activity are good candidates in terms of separating insoluble oils from water and photodegrading soluble chemical pollutants. However, the wide application of such materials is curtailed by their susceptible photodecomposition issue. In this paper, we report the design of a durable yet efficient hydrophobic photocatalyst by immobilizing photocatalytic titanium dioxide (TiO2) on a carbonized melamine foam (CMF) for a three-dimensional (3D) porous structure, and subsequently coating a hydrophobic polydimethylsiloxane (PDMS) layer on TiO2 surface (CMF-TiO2-PDMS). The key feature of the design is that the PDMS layer could re-graft on the TiO2 surface via forming chemical bonds with TiO2 under UV illumination, granting the resulting CMF-TiO2-PDMS stable hydrophobicity to durably resist photocatalytic oxidation. As expected, the as-designed CMF-TiO2-PDMS photocatalyst shows excellent durability in removing insoluble organic solvents and photodegrading soluble chemical pollutants under UV illumination. This study is interesting not only because it provides a paradigm in designing durable yet efficient hydrophobic photocatalyst for wastewater treatment, but also shed lights on the design of other multifunctional materials.
引用
收藏
页码:7271 / 7277
页数:7
相关论文
共 50 条
  • [1] Durable and Recyclable Superhydrophobic Fabric and Mesh for Oil-Water Separation
    Bano, Shaher
    Zulfiqar, Usama
    Zaheer, Usama
    Awais, Muhammad
    Ahmad, Iftikhar
    Subhani, Tayyab
    ADVANCED ENGINEERING MATERIALS, 2018, 20 (01)
  • [2] Feasible Fabrication of a Durable Superhydrophobic Coating on Polyester Fabrics for Oil-Water Separation
    Li Yang
    Wang Jia-Dao
    Fan Li-Ning
    Chen Da-Rong
    ACTA PHYSICO-CHIMICA SINICA, 2016, 32 (04) : 990 - 996
  • [3] Facile construction of durable superhydrophobic cellulose paper for oil-water separation
    Yang, Yuan
    Zhao, Xiaowen
    Ye, Lin
    CELLULOSE, 2023, 30 (05) : 3255 - 3265
  • [4] Superhydrophobic modification of polyurethane sponge for the oil-water separation
    Lin, Bo
    Chen, Jian
    Li, Zeng-Tian
    He, Fu-An
    Li, De-Hao
    SURFACE & COATINGS TECHNOLOGY, 2019, 359 : 216 - 226
  • [5] Superhydrophobic/superlipophilic interface layer for oil-water separation
    Xiao, Fei
    Zhang, Hongxia
    Wu, Tianzhao
    Liu, Jiahao
    Liu, Jianxin
    Zhang, Jiangbo
    Liu, Wei
    Liang, Taixin
    Hu, Jinghui
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 161 : 13 - 21
  • [6] Robust and Durable Superhydrophobic Polyurethane Sponge for Oil/Water Separation
    Zhang, Luhong
    Xu, Lidong
    Sun, Yongli
    Yang, Na
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (43) : 11260 - 11268
  • [7] Robust and durable superhydrophobic steel and copper meshes for separation of oil-water emulsions
    Tudu, Balraj Krishnan
    Kumar, Aditya
    PROGRESS IN ORGANIC COATINGS, 2019, 133 : 316 - 324
  • [8] Facile and durable construction of superhydrophobic cellulose-deposited membrane for efficient oil-water separation
    Zhang, Xia
    Liu, Xia
    Qu, Zijie
    Zang, Luyao
    Zhang, Guodong
    Wang, Xiufeng
    Wang, Fang
    Zhang, Zhiqing
    Zhou, Ting
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 363
  • [9] Preparation of Parabolic Superhydrophobic Material for Oil-Water Separation
    Qiao, Xiaoying
    Yang, Chunyan
    Zhang, Qian
    Yang, Shengke
    Chen, Yangyang
    Zhang, Dan
    Yuan, Xiaoyu
    Wang, Wenke
    Zhao, Yaqian
    MATERIALS, 2018, 11 (10)
  • [10] Three-dimensionally printed bioinspired superhydrophobic PLA membrane for oil-water separation
    Xing, Ruizhe
    Huang, Renliang
    Qi, Wei
    Su, Rongxin
    He, Zhimin
    AICHE JOURNAL, 2018, 64 (10) : 3700 - 3708