Symbolic dynamics of Belykh-type maps

被引:1
作者
Li, Denghui [1 ]
Xie, Jianhua [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Mech & Engn, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金;
关键词
discontinuous piecewise linear map; symbolic dynamics; pruning front; primary pruned region; horseshoe; PRUNING FRONT CONJECTURE; STATISTICAL PROPERTIES; SLIDING BIFURCATIONS; KNEADING THEORY; LOZI MAPPINGS; DIMENSION; SYSTEMS;
D O I
10.1007/s10483-016-2080-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The symbolic dynamics of a Belykh-type map (a two-dimensional discontinuous piecewise linear map) is investigated. The admissibility condition for symbol sequences named the pruning front conjecture is proved under a hyperbolicity condition. Using this result, a symbolic dynamics model of the map is constructed according to its pruning front and primary pruned region. Moreover, the boundary of the parameter region in which the map is chaotic of a horseshoe type is given.
引用
收藏
页码:671 / 682
页数:12
相关论文
共 32 条
[1]   STATISTICAL PROPERTIES OF 2-D GENERALIZED HYPERBOLIC ATTRACTORS [J].
AFRAIMOVICH, VS ;
CHERNOV, NI ;
SATAEV, EA .
CHAOS, 1995, 5 (01) :238-252
[2]   KNEADINGS, SYMBOLIC DYNAMICS AND PAINTING LORENZ CHAOS [J].
Barrio, Roberto ;
Shilnikov, Andrey ;
Shilnikov, Leonid .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04)
[3]  
Belykh V. M., 1980, QUALITATIVE METHODS
[4]   Kneading theory analysis of the Duffing equation [J].
Caneco, Acilina ;
Gracio, Clara ;
Rocha, J. Leonel .
CHAOS SOLITONS & FRACTALS, 2009, 42 (03) :1529-1538
[5]   TOPOLOGICAL AND METRIC PROPERTIES OF HENON-TYPE STRANGE ATTRACTORS [J].
CVITANOVIC, P ;
GUNARATNE, GH ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1988, 38 (03) :1503-1520
[6]   PERIODIC-ORBITS AS THE SKELETON OF CLASSICAL AND QUANTUM CHAOS [J].
CVITANOVIC, P .
PHYSICA D, 1991, 51 (1-3) :138-151
[7]   Sliding bifurcations: A novel mechanism for the sudden onset of chaos in dry friction oscillators [J].
Di Bernardo, M ;
Kowalczyk, P ;
Nordmark, A .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (10) :2935-2948
[8]  
DiBernardo M, 2008, APPL MATH SCI, V163, P1, DOI 10.1007/978-1-84628-708-4
[9]   An Analytical Approach to Codimension-2 Sliding Bifurcations in the Dry-Friction Oscillator [J].
Guardia, Marcel ;
Hogan, S. John ;
Seara, Tere M. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2010, 9 (03) :769-798
[10]   A Geometric Model for Mixed-Mode Oscillations in a Chemical System [J].
Guckenheimer, John ;
Scheper, Chris .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2011, 10 (01) :92-128