A conjectural Peterson isomorphism in K-theory

被引:11
作者
Lam, Thomas [1 ]
Li, Changzheng [2 ]
Mihalcea, Leonardo C. [3 ]
Shimozono, Mark [3 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R China
[3] Virginia Tech, Dept Math, 460 McBryde Hall, Blacksburg, VA 24061 USA
关键词
Flag manifolds; Affine Grassmannian; Quantum K theory; Khomology of the affine; Grassmannian; QUANTUM COHOMOLOGY; FLAG MANIFOLDS; VARIETIES; FINITENESS;
D O I
10.1016/j.jalgebra.2018.07.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We state a precise conjectural isomorphism between localizations of the equivariant quantum K-theory ring of a flag variety and the equivariant K-homology ring of the affine Grassmannian, in particular relating their Schubert bases and structure constants. This generalizes Peterson's isomorphism in (co)homology. We prove a formula for the Pontryagin structure constants in the K-homology ring, and we use it to check our conjecture in few situations. Published by Elsevier Inc.
引用
收藏
页码:326 / 343
页数:18
相关论文
共 38 条
[21]   Reconstruction and Convergence in Quantum K-Theory via Difference Equations [J].
Iritani, Hiroshi ;
Milanov, Todor ;
Tonita, Valentin .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (11) :2887-2937
[22]  
Kashiwara M., 1989, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), P161
[23]   EQUIVARIANT K-THEORY OF AFFINE FLAG MANIFOLDS AND AFFINE GROTHENDIECK POLYNOMIALS [J].
Kashiwara, Masaki ;
Shimozono, Mark .
DUKE MATHEMATICAL JOURNAL, 2009, 148 (03) :501-538
[24]  
KATO S., PREPRINT
[25]   Quantum cohomology of flag manifolds G/B and quantum Toda lattices [J].
Kim, B .
ANNALS OF MATHEMATICS, 1999, 149 (01) :129-148
[26]  
Koroteev P., ARXIV170510419MATHAG
[27]  
KOSTANT B, 1990, J DIFFER GEOM, V32, P549
[28]  
Kumar S., 2018, J EUR MATH SOC JEMS
[29]   Richardson Varieties have Kawamata Log Terminal Singularities [J].
Kumar, Shrawan ;
Schwede, Karl .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (03) :842-864
[30]   K-theory Schubert calculus of the affine Grassmannian [J].
Lam, Thomas ;
Schilling, Anne ;
Shimozono, Mark .
COMPOSITIO MATHEMATICA, 2010, 146 (04) :811-852