A conjectural Peterson isomorphism in K-theory

被引:11
作者
Lam, Thomas [1 ]
Li, Changzheng [2 ]
Mihalcea, Leonardo C. [3 ]
Shimozono, Mark [3 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R China
[3] Virginia Tech, Dept Math, 460 McBryde Hall, Blacksburg, VA 24061 USA
关键词
Flag manifolds; Affine Grassmannian; Quantum K theory; Khomology of the affine; Grassmannian; QUANTUM COHOMOLOGY; FLAG MANIFOLDS; VARIETIES; FINITENESS;
D O I
10.1016/j.jalgebra.2018.07.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We state a precise conjectural isomorphism between localizations of the equivariant quantum K-theory ring of a flag variety and the equivariant K-homology ring of the affine Grassmannian, in particular relating their Schubert bases and structure constants. This generalizes Peterson's isomorphism in (co)homology. We prove a formula for the Pontryagin structure constants in the K-homology ring, and we use it to check our conjecture in few situations. Published by Elsevier Inc.
引用
收藏
页码:326 / 343
页数:18
相关论文
共 38 条
[1]  
Anderson D., ARXIV171108414MATHAG
[2]  
Anderson D., ARXIV180404579MATHAG
[3]   Positivity and Kleiman transversality in equivariant K-theory of homogeneous spaces [J].
Anderson, Dave ;
Griffeth, Stephen ;
Miller, Ezra .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (01) :57-84
[4]  
[Anonymous], 2002, Kac-Moody Groups, Their Flag Varieties and Their Representations
[5]  
[Anonymous], 2010, REPRESENTATION THEOR
[6]   POSITIVITY IN T-EQUIVARIANT K-THEORY OF FLAG VARIETIES ASSOCIATED TO KAC-MOODY GROUPS II [J].
Baldwin, Seth ;
Kumar, Shrawan .
REPRESENTATION THEORY, 2017, 21 :35-60
[7]   SEMI-INFINITE SCHUBERT VARIETIES AND QUANTUM K-THEORY OF FLAG MANIFOLDS [J].
Braverman, Alexander ;
Finkelberg, Michael .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 27 (04) :1147-1168
[8]  
Brion M, 2005, TRENDS MATH, P33, DOI 10.1007/3-7643-7342-3_2
[9]  
BRION M., 2005, PROGR MATH, V231
[10]  
Buch A. S., ARXIV160407500MATHAG