Subsurface Imaging of Coupled Carrier Transport in GaAs/AlGaAs Core-Shell Nanowires

被引:11
作者
Chen, Guannan [1 ]
McGuckin, Terrence [1 ]
Hawley, Christopher J. [1 ]
Gallo, Eric M. [1 ]
Prete, Paola [3 ]
Miccoli, Ilio [4 ]
Lovergine, Nico [4 ]
Spanier, Jonathan E. [1 ,2 ]
机构
[1] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[2] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA
[3] CNR, IMM, I-73100 Lecce, Italy
[4] Univ Salento, Dept Innovat Engn, I-73100 Lecce, Italy
基金
美国国家科学基金会;
关键词
Electron beam induced current (EBIC); subsurface imaging; scanning probe microscopy; heterostructured nanowire; core-shell nanowire; GAAS; BAND; HETEROSTRUCTURES; ABSORPTION; RESISTANCE; DYNAMICS; LENGTH;
D O I
10.1021/nl502995q
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We demonstrate spatial probing of carrier transport within GaAs/AlGaAs coreshell nanowires with nanometer lateral resolution and subsurface sensitivity by energy-variable electron beam induced current imaging. Carrier drift that evolves with applied electric field is distinguished from a coupled drift-diffusion length. Along with simulation of injected electron trajectories, combining beam energy tuning with precise positioning for selective probing of core and shell reveals axial position- and bias-dependent differences in carrier type and transport along parallel conduction channels. These results indicate how analysis of transport within heterostructured nanomaterials is no longer limited to nonlocal or surface measurements.
引用
收藏
页码:75 / 79
页数:5
相关论文
共 33 条
[11]  
Ferry D., 2000, SEMICONDUCTOR TRANSP, P384
[12]   Electrothermal Dynamics of Semiconductor Nanowires under Local Carrier Modulation [J].
Fu, Deyi ;
Zou, Jijun ;
Wang, Kevin ;
Zhang, Rong ;
Yu, Dong ;
Wu, Junqiao .
NANO LETTERS, 2011, 11 (09) :3809-3815
[13]   Picosecond response times in GaAs/AlGaAs core/shell nanowire-based photodetectors [J].
Gallo, Eric M. ;
Chen, Guannan ;
Currie, Marc ;
McGuckin, Terrence ;
Prete, Paola ;
Lovergine, Nico ;
Nabet, Bahram ;
Spanier, Jonathan E. .
APPLIED PHYSICS LETTERS, 2011, 98 (24)
[14]   Near-field scanning photocurrent microscopy of a nanowire photodetector [J].
Gu, Y ;
Kwak, ES ;
Lensch, JL ;
Allen, JE ;
Odom, TW ;
Lauhon, LJ .
APPLIED PHYSICS LETTERS, 2005, 87 (04)
[15]   Direct Determination of Minority Carrier Diffusion Lengths at Axial GaAs Nanowire p-n Junctions [J].
Gutsche, Christoph ;
Niepelt, Raphael ;
Gnauck, Martin ;
Lysov, Andrey ;
Prost, Werner ;
Ronning, Carsten ;
Tegude, Franz-Josef .
NANO LETTERS, 2012, 12 (03) :1453-1458
[16]   NEGATIVE DIFFERENTIAL RESISTANCE THROUGH REAL-SPACE ELECTRON-TRANSFER [J].
HESS, K ;
MORKOC, H ;
SHICHIJO, H ;
STREETMAN, BG .
APPLIED PHYSICS LETTERS, 1979, 35 (06) :469-471
[17]  
Kelzenberg MD, 2010, NAT MATER, V9, P239, DOI [10.1038/nmat2635, 10.1038/NMAT2635]
[18]   Gate coupling and charge distribution in nanowire field effect transistors [J].
Khanal, D. R. ;
Wu, J. .
NANO LETTERS, 2007, 7 (09) :2778-2783
[19]   INFLUENCE OF COPPER CONTAMINATION ON RECOMBINATION ACTIVITY OF MISFIT DISLOCATIONS IN SIGE/SI EPILAYERS - TEMPERATURE-DEPENDENCE OF ACTIVITY AS A MARKER CHARACTERIZING THE CONTAMINATION LEVEL [J].
KITTLER, M ;
ULHAQBOUILLET, C ;
HIGGS, V .
JOURNAL OF APPLIED PHYSICS, 1995, 78 (07) :4573-4583
[20]   Structural Phase Control in Self-Catalyzed Growth of GaAs Nanowires on Silicon (111) [J].
Krogstrup, Peter ;
Popovitz-Biro, Ronit ;
Johnson, Erik ;
Madsen, Morten Hannibal ;
Nygard, Jesper ;
Shtrikman, Hadas .
NANO LETTERS, 2010, 10 (11) :4475-4482