Almost primes in short intervals

被引:5
作者
Wu Jie [1 ]
机构
[1] Nancy Univ, INRIA, CNRS, Inst Elie Cartan Nancy, F-54506 Vand Euvre Les Nancy, France
关键词
estimates on exponential sums; distribution of integers with specified multiplicative constraints; applications of sieve methods; EXPONENTIAL-SUMS; MONOMIALS; SIEVE; WEIGHTS; NUMBERS;
D O I
10.1007/s11425-010-4039-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that the short interval (x-x(101/232), x] contains at least an almost prime P(2) for sufficiently large x, where P(2) denotes an integer having at most two prime factors counted with multiplicity.
引用
收藏
页码:2511 / 2524
页数:14
相关论文
共 27 条
[1]   The difference between consecutive primes, II [J].
Baker, RC ;
Harman, G ;
Pintz, J .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2001, 83 :532-562
[2]  
CHEN JR, 1979, SCI SINICA, V22, P253
[3]  
CHEN JR, 1975, SCI SINICA, V18, P611
[4]  
FOUVRY E, 1990, LECT NOTES MATH, V1434, P65
[5]   EXPONENTIAL-SUMS WITH MONOMIALS [J].
FOUVRY, E ;
IWANIEC, H .
JOURNAL OF NUMBER THEORY, 1989, 33 (03) :311-333
[6]   The polynomial X2+Y4 captures its primes [J].
Friedlander, J ;
Iwaniec, H .
ANNALS OF MATHEMATICS, 1998, 148 (03) :945-1040
[7]   A WEIGHTED SIEVE OF BRUNS TYPE [J].
GREAVES, G .
ACTA ARITHMETICA, 1982, 40 (03) :297-332
[8]  
Halberstam H., 1985, BANACH CTR PUBLICATI, V171, P183
[9]  
HALBERSTAM H, 1981, RECENT PROGR ANAL NU, V1, P69
[10]  
HOHEISEL G, SBER BERL MATH GES, P580