A Bayesian approach to the dynamic modeling of ESP-lifted oil well systems: An experimental validation on an ESP prototype

被引:10
作者
Costa, E. A. [1 ]
de Abreu, O. S. L. [1 ]
Silva, T. de O. [1 ]
Ribeiro, M. P. [2 ]
Schnitman, L. [1 ]
机构
[1] Univ Fed Bahia, Programa Posgrad Mecatron, Rua Aristides Novis 2, BR-40210630 Salvador, BA, Brazil
[2] CENPES, Petrobras R&D Ctr, Av Horacio Macedo 950,Cid Univ, Rio De Janeiro, RJ, Brazil
关键词
Modeling; Bayesian inference; Electrical submersible pump; ELECTRIC SUBMERSIBLE PUMP; PREDICTIVE CONTROL;
D O I
10.1016/j.petrol.2021.108880
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This article presents an integrated method for estimating parameters for an electric submersible pump system with process variables data. Validation of a phenomenological model is also performed. The parameters and the associated probability density function are obtained through Bayesian inference, and the model validation is achieved in two stages. The first one is the validation of the dynamic response in which the model is compared with the experimental data. The second is achieved by comparing the regions covered by the experimental data and the model, both in steady-state. The experimental data's uncertainty is assessed using the Guide for the Expression of Uncertainty in Measurement. In turn, the uncertainty of the model's prediction is obtained by propagating the probability density function parameters. The results indicate that the method can provide a model to represent the system behavior within the existing uncertainties. Additionally, the procedure can be applied in oil production fields to provide substitute models for general purposes, such as production control, optimization, and assistance.
引用
收藏
页数:14
相关论文
共 26 条
[1]  
Barbosa T. d. S., 2011, THESIS U FEDERAL RIO
[2]  
Bard Y., 1974, Nonlinear Parameter Estimation
[3]  
Batista E. d. S., 2009, THESIS U FEDERAL RIO
[4]   Improved predictions from measured disturbances in linear model predictive control [J].
Binder, B. J. T. ;
Johansen, T. A. ;
Imsland, L. .
JOURNAL OF PROCESS CONTROL, 2019, 75 :86-106
[5]  
Binder Benjamin J. T., 2015, IFAC - Papers Online, V48, P140, DOI 10.1016/j.ifacol.2015.08.022
[6]  
Binder BJT, 2014, IEEE INTL CONF CONTR, P579, DOI 10.1109/CCA.2014.6981402
[7]  
BIPM IEC IFCC ISO IUPAC IUPAP and OIML, 2008, EV MEAS DAT GUID EXP, V100, P2008
[8]  
Costa R.d.O., 2012, THESIS U FEDERAL RIO
[9]  
Costa R.O., 2013, RIO PIP C EXP, P10
[10]   A Neuro-Fuzzy Control Scheme for the Electrical Submersible Pumping in Oilfield Systems [J].
de Araujo Filho, F. G. ;
Maitelli, A. L. .
IEEE LATIN AMERICA TRANSACTIONS, 2017, 15 (11) :2077-2083