Domination numbers and homology

被引:72
作者
Meshulam, R [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
D O I
10.1016/S0097-3165(03)00045-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let I(G) denote the independence complex of a graph G = (V, E). Some relations between domination numbers of G and the homology of I(G) are given. As a consequence the following Hall-type conjecture of Aharoni is proved: Let gamma(s)(*)(G) denote the fractional star-domination number of G and let V = boolean ORi=1m V-i be a partition of V into m classes. If gamma(s)* (G[boolean ORiis an element ofI Vi]) > \I\ - 1 for all I subset of {1,..., m} then G contains an independent set which intersects all m classes. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:321 / 330
页数:10
相关论文
共 9 条
[1]  
Aharoni R, 2000, J GRAPH THEOR, V35, P83, DOI 10.1002/1097-0118(200010)35:2<83::AID-JGT2>3.0.CO
[2]  
2-V
[3]   A tree version of Konig's theorem [J].
Aharoni, R ;
Berger, E ;
Ziv, R .
COMBINATORICA, 2002, 22 (03) :335-343
[4]  
[Anonymous], 1995, TOPOLOGICAL METHODS
[5]   Note on a combinatorial application of Alexander duality [J].
Bjorner, A ;
Butler, LM ;
Matveev, AO .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 80 (01) :163-165
[6]   CHESSBOARD COMPLEXES AND MATCHING COMPLEXES [J].
BJORNER, A ;
LOVASZ, L ;
VRECICA, ST ;
ZIVALJEVIC, RT .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1994, 49 :25-39
[7]  
Chudnovsky M., 2000, THESIS TECHNION HAIF
[8]   The clique complex and hypergraph matching [J].
Meshulam, R .
COMBINATORICA, 2001, 21 (01) :89-94
[9]  
ZIVALJEVIC RT, 1992, J COMB THEORY A, V61, P309