The active modulation of drug release by an ionic field effect transistor for an ultra-low power implantable nanofluidic system

被引:38
作者
Bruno, Giacomo [1 ,2 ]
Canavese, Giancarlo [3 ]
Liu, Xuewu [1 ]
Filgueira, Carly S. [1 ]
Sacco, Adriano [4 ]
Demarchi, Danilo [2 ]
Ferrari, Mauro [1 ]
Grattoni, Alessandro [1 ]
机构
[1] Houston Methodist Res Inst, Dept Nanomed, 6670 Bertner Ave, Houston, TX 77030 USA
[2] Politecn Torino, Dept Elect & Telecommun, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[3] Politecn Torino, Dept Appl Sci & Technol, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[4] Inst Italiano Tecnol, Ctr Sustainable Futures POLITO, Corso Trento 21, I-10129 Turin, Italy
关键词
ELECTROOSMOTIC FLOW; DELIVERY; DEVICE; NANOCHANNELS; DIFFUSION;
D O I
10.1039/c6nr06235k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report an electro-nanofluidic membrane for tunable, ultra-low power drug delivery employing an ionic field effect transistor. Therapeutic release from a drug reservoir was successfully modulated, with high energy efficiency, by actively adjusting the surface charge of slit-nanochannels 50, 110, and 160 nm in size, by the polarization of a buried gate electrode and the consequent variation of the electrical double layer in the nanochannel. We demonstrated control over the transport of ionic species, including two relevant hypertension drugs, atenolol and perindopril, that could benefit from such modulation. By leveraging concentration-driven diffusion, we achieve a 2 to 3 order of magnitude reduction in power consumption as compared to other electrokinetic phenomena. The application of a small gate potential (similar to 5 V) in close proximity (150 nm) of 50 nm nanochannels generated a sufficiently strong electric field, which doubled or blocked the ionic flux depending on the polarity of the voltage applied. These compelling findings can lead to next generation, more reliable, smaller, and longer lasting drug delivery implants with ultra-low power consumption.
引用
收藏
页码:18718 / 18725
页数:8
相关论文
共 52 条
[1]   In vitro inflammatory response of nanostructured titania, silicon oxide, and polycaprolactone [J].
Ainslie, Kristy M. ;
Tao, Sarah L. ;
Popat, Ketul C. ;
Daniels, Hugh ;
Hardev, Veeral ;
Grimes, Craig A. ;
Desai, Tejal A. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2009, 91A (03) :647-655
[2]   Fabrication and functionalization of single asymmetric nanochannels for electrostatic/hydrophobic association of protein molecules [J].
Ali, Mubarak ;
Bayer, Veronika ;
Schiedt, Birgitta ;
Neumann, Reinhard ;
Ensinger, Wolfgang .
NANOTECHNOLOGY, 2008, 19 (48)
[3]   3D-printed microfluidic devices [J].
Amin, Reza ;
Knowlton, Stephanie ;
Hart, Alexander ;
Yenilmez, Bekir ;
Ghaderinezhad, Fariba ;
Katebifar, Sara ;
Messina, Michael ;
Khademhosseini, Ali ;
Tasoglu, Savas .
BIOFABRICATION, 2016, 8 (02)
[4]   Power Approaches for Implantable Medical Devices [J].
Ben Amar, Achraf ;
Kouki, Ammar B. ;
Cao, Hung .
SENSORS, 2015, 15 (11) :28889-28914
[5]   Leveraging electrokinetics for the active control of dendritic fullerene-1 release across a nanochannel membrane [J].
Bruno, Giacomo ;
Geninatti, Thomas ;
Hood, R. Lyle ;
Fine, Daniel ;
Scorrano, Giovanni ;
Schmulen, Jeffrey ;
Hosali, Sharath ;
Ferrari, Mauro ;
Grattoni, Alessandro .
NANOSCALE, 2015, 7 (12) :5240-5248
[6]   Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure [J].
Chobanian, AV ;
Bakris, GL ;
Black, HR ;
Cushman, WC ;
Green, LA ;
Izzo, JL ;
Jones, DW ;
Materson, BJ ;
Oparil, S ;
Wright, JT ;
Roccella, EJ .
HYPERTENSION, 2003, 42 (06) :1206-1252
[7]   Tunable liquid-filled microlens array integrated with microfluidic network [J].
Chronis, N ;
Liu, GL ;
Jeong, KH ;
Lee, LP .
OPTICS EXPRESS, 2003, 11 (19) :2370-2378
[8]  
CRUICKSHANK JM, 1987, LANCET, V1, P581
[9]   An implantable MEMS drug delivery device for rapid delivery in ambulatory emergency care [J].
Elman, N. M. ;
Duc, H. L. Ho ;
Cima, M. J. .
BIOMEDICAL MICRODEVICES, 2009, 11 (03) :625-631
[10]   Adverse Drug Reactions in Patients with Cardiovascular Disease [J].
Faulx, Michael D. ;
Francis, Gary S. .
CURRENT PROBLEMS IN CARDIOLOGY, 2008, 33 (12) :703-768