A note on biorthogonal ensembles

被引:50
作者
Desrosiers, Patrick [1 ]
Forrester, Peter J. [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
multiple polynomials; random matrices;
D O I
10.1016/j.jat.2007.08.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study multiple orthogonal polynomials in the context of biorthogonal ensembles of random matrices. In these ensembles, the eigenvalue probability density function factorizes into a product of two determinants while the eigenvalue correlation functions can be written as a determinant of a kernel function. We show that the kernel is itself an average of a single ratio of characteristic polynomials. In the same vein, we prove that the type I multiple polynomials can be expressed as an average of the inverse of a characteristic polynomial. We finally introduce a new biorthogonal matrix ensemble, namely the chiral unitary perturbed by a source term, whose multiple polynomials are related to the modified Bessel function of the first kind. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:167 / 187
页数:21
相关论文
共 37 条
[1]   Large n limit of Gaussian random matrices with external source, Part II [J].
Aptekarev, AI ;
Bleher, PM ;
Kuijlaars, ABJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 259 (02) :367-389
[2]   Multiple orthogonal polynomials for classical weights [J].
Aptekarev, AI ;
Branquinho, A ;
Van Assche, W .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (10) :3887-3914
[3]   Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices [J].
Baik, J ;
Ben Arous, G ;
Péché, S .
ANNALS OF PROBABILITY, 2005, 33 (05) :1643-1697
[4]   Painleve formulas of the limiting distributions for nonnull complex sample covariance matrices [J].
Baik, Jinho .
DUKE MATHEMATICAL JOURNAL, 2006, 133 (02) :205-235
[5]   NONLOGARITHMIC REPULSION OF TRANSMISSION EIGENVALUES IN A DISORDERED WIRE [J].
BEENAKKER, CWJ ;
REJAEI, B .
PHYSICAL REVIEW LETTERS, 1993, 71 (22) :3689-3692
[6]   Large n limit of Gaussian random matrices with external source, part I [J].
Bleher, P ;
Kuijlaars, ABJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 252 (1-3) :43-76
[7]  
Bleher PM, 2005, ANN I FOURIER, V55, P2001
[8]  
Bleher PM, 2004, INT MATH RES NOTICES, V2004, P109
[9]   Averages of characteristic polynomials in random matrix theory [J].
Borodin, A ;
Strahov, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (02) :161-253
[10]   Biorthogonal ensembles [J].
Borodin, A .
NUCLEAR PHYSICS B, 1998, 536 (03) :704-732