Harnack inequalities for SDEs driven by subordinator fractional Brownian motion

被引:4
作者
Li, Zhi [1 ,2 ]
Yan, Litan [1 ]
机构
[1] Donghua Univ, Coll Informat Sci & Technol, 2999 North Renmin Rd, Shanghai 201620, Peoples R China
[2] Yangtze Univ, Sch Informat & Math, Jingzhou 434023, Peoples R China
关键词
Harnack inequality; Fractional Brownian motion; Subordinator; EQUATIONS; FORMULAS; NOISE;
D O I
10.1016/j.spl.2017.10.015
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
By using a transformation formulas for fractional Brownian motion, the Harnack inequalities for stochastic differential equations driven by subordinator fractional Brownian motion with Hurst parameter H is an element of (1/2, 1) are established. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:45 / 53
页数:9
相关论文
共 18 条
[1]   Stochastic calculus with respect to Gaussian processes [J].
Alòs, E ;
Mazet, O ;
Nualart, D .
ANNALS OF PROBABILITY, 2001, 29 (02) :766-801
[2]   Equivalent Harnack and gradient inequalities for pointwise curvature lower bound [J].
Arnaudon, Marc ;
Thalmaier, Anton ;
Wang, Feng-Yu .
BULLETIN DES SCIENCES MATHEMATIQUES, 2014, 138 (05) :643-655
[3]  
Biagini F, 2008, PROBAB APPL SER, P1
[4]   Relation between postural control assessment with eyes open and centre of pressure visual feedback effects in healthy individuals [J].
Boudrahem, Samir ;
Rougier, Patrice R. .
EXPERIMENTAL BRAIN RESEARCH, 2009, 195 (01) :145-152
[5]   Long memory continuous time models [J].
Comte, F ;
Renault, E .
JOURNAL OF ECONOMETRICS, 1996, 73 (01) :101-149
[6]   Singular stochastic equations on Hilbert spaces: Harnack inequalities for their transition semigroups [J].
Da Prato, Giuseppe ;
Roeckner, Michael ;
Wang, Feng-Yu .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (04) :992-1017
[7]   Long-range correlations in rabbit brain neural activity [J].
De la Fuente, IM ;
Perez-Samartin, AL ;
Martínez, L ;
Garcia, MA ;
Vera-Lopez, A .
ANNALS OF BIOMEDICAL ENGINEERING, 2006, 34 (02) :295-299
[8]   Stochastic analysis of the fractional Brownian motion [J].
Decreusefond, L ;
Üstünel, AS .
POTENTIAL ANALYSIS, 1999, 10 (02) :177-214
[9]   Harnack inequalities for SDEs driven by time-changed fractional Brownian motions [J].
Deng, Chang-Song ;
Schilling, Rene L. .
ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
[10]   Harnack inequalities for SDEs driven by subordinate Brownian motions [J].
Deng, Chang-Song .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 417 (02) :970-978