Seeing patterns through the hemodynamic veil - The future of pattern-information fMRI

被引:21
作者
Formisano, Elia [1 ,2 ]
Kriegeskorte, Nikolaus [3 ]
机构
[1] Maastricht Univ, Fac Psychol & Neurosci, Dept Cognit Neurosci, Maastricht, Netherlands
[2] Maastricht Univ, Maastricht Brain Imaging Ctr, Maastricht, Netherlands
[3] MRC, Cognit & Brain Sci Unit, Cambridge, England
基金
欧洲研究理事会; 英国医学研究理事会;
关键词
PHYSIOLOGICAL NOISE; 7; T; VECTOR MACHINE; FUNCTIONAL MRI; TIME-SERIES; ORIENTATION; REPRESENTATIONS; SIGNAL; ACTIVATION; REGRESSION;
D O I
10.1016/j.neuroimage.2012.02.078
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Pattern-information fMRI (pi-fMRI) has become a popular method in neuroscience. The technique is motivated by the idea that spatial patterns of fMRI activity reflect the neuronal population codes of perception, cognition, and action. In this commentary, we discuss three fundamental outstanding questions: (1) What is the relationship between neuronal patterns and fMRI patterns? (2) Does pattern-information fMRI benefit from hyperacuity, enabling the investigation of columnar-level neuronal information, even at low resolution? (3) Do high-resolution and high-field fMRI increase sensitivity to pattern information? The empirical answers will enable us to optimize pi-fMRI data acquisition and to understand the ultimate potential and appropriate interpretation of pi-fMRI results. Furthermore, considering the relationship between neuronal activity and fMRI at the level of spatiotemporal patterns provides a novel and important perspective on the basis of the fMRI signal. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1249 / 1256
页数:8
相关论文
共 65 条
[1]   Mapping the MRI voxel volume in which thermal noise matches physiological noise-Implications for fMRI [J].
Bodurka, J. ;
Ye, F. ;
Petridou, N. ;
Murphy, K. ;
Bandettini, P. A. .
NEUROIMAGE, 2007, 34 (02) :542-549
[2]   Linear systems analysis of functional magnetic resonance imaging in human V1 [J].
Boynton, GM ;
Engel, SA ;
Glover, GH ;
Heeger, DJ .
JOURNAL OF NEUROSCIENCE, 1996, 16 (13) :4207-4221
[3]   Imaging orientation selectivity: decoding conscious perception in V1 [J].
Boynton, GM .
NATURE NEUROSCIENCE, 2005, 8 (05) :541-542
[4]  
Carlson TA, 2003, J COGNITIVE NEUROSCI, V15, P704, DOI 10.1162/089892903322307429
[5]   Modeling and analysis of mechanisms underlying fMRI-based decoding of information conveyed in cortical columns [J].
Chaimow, Denis ;
Yacoub, Essa ;
Ugurbil, Kamil ;
Shmuel, Amir .
NEUROIMAGE, 2011, 56 (02) :627-642
[6]   Kernel regression for fMRI pattern prediction [J].
Chu, Carlton ;
Ni, Yizhao ;
Tan, Geoffrey ;
Saunders, Craig J. ;
Ashburner, John .
NEUROIMAGE, 2011, 56 (02) :662-673
[7]   Functional magnetic resonance imaging (fMRI) "brain reading": detecting and classifying distributed patterns of fMRI activity in human visual cortex [J].
Cox, DD ;
Savoy, RL .
NEUROIMAGE, 2003, 19 (02) :261-270
[8]   Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns [J].
De Martino, Federico ;
Valente, Giancarlo ;
Staeren, Noel ;
Ashburner, John ;
Goebel, Rainer ;
Formisano, Elia .
NEUROIMAGE, 2008, 43 (01) :44-58
[9]   Predicting EEG single trial responses with simultaneous fMRI and Relevance Vector Machine regression [J].
De Martino, Federico ;
de Borst, Aline W. ;
Valente, Giancarlo ;
Goebel, Rainer ;
Formisano, Elia .
NEUROIMAGE, 2011, 56 (02) :826-836
[10]   Population receptive field estimates in human visual cortex [J].
Dumoulin, Serge O. ;
Wandell, Brian A. .
NEUROIMAGE, 2008, 39 (02) :647-660