Non-reflecting boundary conditions for the two-dimensional Schrodinger equation

被引:39
作者
Schädle, A [1 ]
机构
[1] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
关键词
D O I
10.1016/S0165-2125(01)00098-1
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Non-reflecting boundary conditions are introduced for the two-dimensional Fresnel/Schrodinger equation. These are nonlocal in time and in space. Time discretization is done by the trapezoidal rule in the interior and by convolution quadrature on the boundary. A convergence estimate is given for the semidiscretization. Space discretization is done using the finite element method and coupling the boundary conditions by collocation. A numerical example is given. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:181 / 188
页数:8
相关论文
共 18 条
[11]  
Lebedev N. N., 1965, SPECIAL FUNCTIONS TH
[12]   ON THE MULTISTEP TIME DISCRETIZATION OF LINEAR INITIAL-BOUNDARY VALUE-PROBLEMS AND THEIR BOUNDARY INTEGRAL-EQUATIONS [J].
LUBICH, C .
NUMERISCHE MATHEMATIK, 1994, 67 (03) :365-389
[13]   CONVOLUTION QUADRATURE AND DISCRETIZED OPERATIONAL CALCULUS .1. [J].
LUBICH, C .
NUMERISCHE MATHEMATIK, 1988, 52 (02) :129-145
[14]  
Pazy A., 1983, SEMIGROUPS LINEAR OP, DOI [10.1007/978-1-4612-5561-1, DOI 10.1007/978-1-4612-5561-1]
[15]  
SCHADLE A, 1998, THESIS
[16]   Discrete transparent boundary conditions for Schrodinger-type equations [J].
Schmidt, F ;
Yevick, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 134 (01) :96-107
[17]   Numerical solution of problems on unbounded domains. A review [J].
Tsynkov, SV .
APPLIED NUMERICAL MATHEMATICS, 1998, 27 (04) :465-532
[18]  
Watson GN, 1958, TREATISE THEORY BESS