Non-reflecting boundary conditions for the two-dimensional Schrodinger equation

被引:39
作者
Schädle, A [1 ]
机构
[1] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
关键词
D O I
10.1016/S0165-2125(01)00098-1
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Non-reflecting boundary conditions are introduced for the two-dimensional Fresnel/Schrodinger equation. These are nonlocal in time and in space. Time discretization is done by the trapezoidal rule in the interior and by convolution quadrature on the boundary. A convergence estimate is given for the semidiscretization. Space discretization is done using the finite element method and coupling the boundary conditions by collocation. A numerical example is given. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:181 / 188
页数:8
相关论文
共 18 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   IMPLEMENTATION OF TRANSPARENT BOUNDARIES FOR NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION [J].
BASKAKOV, VA ;
POPOV, AV .
WAVE MOTION, 1991, 14 (02) :123-128
[3]  
Colton D., 2019, Inverse Acoustic and Electromagnetic Scattering, V93
[4]  
Colton D., 1983, INTEGRAL EQUATION ME
[5]   NONREFLECTING BOUNDARY-CONDITIONS [J].
GIVOLI, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 94 (01) :1-29
[6]  
Givoli D., 1992, NUMERICAL METHODS PR
[7]  
Hagstrom T., 1999, Acta Numerica, V8, P47, DOI 10.1017/S0962492900002890
[8]   FAST NUMERICAL-SOLUTION OF NONLINEAR VOLTERRA CONVOLUTION EQUATIONS [J].
HAIRER, E ;
LUBICH, C ;
SCHLICHTE, M .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1985, 6 (03) :532-541
[9]  
Hairer E., 1991, SOLVING ORDINARY DIF
[10]   THE FINITE-DIFFERENCE VECTOR BEAM PROPAGATION METHOD - ANALYSIS AND ASSESSMENT [J].
HUANG, WP ;
XU, CL ;
CHU, ST ;
CHAUDHURI, SK .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1992, 10 (03) :295-305