ON PERIODIC POINTS OF SYMPLECTOMORPHISMS ON SURFACES

被引:2
作者
Batoreo, Marta [1 ]
机构
[1] Univ Fed Espirito Santo, Dept Matemat, Campus Goiabeiras, Vitoria, Brazil
关键词
symplectomorphisms; surfaces; Floer homology; HAMILTONIAN DIFFEOMORPHISMS; CONLEY CONJECTURE; ORBITS; SYSTEMS; THEOREM;
D O I
10.2140/pjm.2018.294.19
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a symplectic flow on a surface of genus g >= 2, Sigma(g >= 2), with exactly 2g - 2 hyperbolic fixed points and no other periodic orbits. Moreover, we prove that a (strongly nondegenerate) symplectomorphism of Sigma(g >= 2) isotopic to the identity has infinitely many periodic points if there exists a fixed point with nonzero mean index. From this result, we obtain two corollaries, namely that such a symplectomorphism of Sigma(g >= 2) with an elliptic fixed point or with strictly more than 2g - 2 fixed points has infinitely many periodic points provided that the flux of the isotopy is "irrational".
引用
收藏
页码:19 / 40
页数:22
相关论文
共 29 条
  • [1] Adams J. F., 1978, ANN MATH STUDIES, V90
  • [2] [Anonymous], 1959, Pure and Applied Mathematics
  • [3] On non-contractible periodic orbits of symplectomorphisms
    Batoreo, Marta
    [J]. JOURNAL OF SYMPLECTIC GEOMETRY, 2017, 15 (03) : 687 - 717
  • [4] On hyperbolic points and periodic orbits of symplectomorphisms
    Batoreo, Marta
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2015, 91 : 249 - 265
  • [5] Bramham B, 2012, SURV DIFF GEOM, V17, P127
  • [6] Burghelea D., 2001, PREPRINT
  • [7] A symplectic proof of a theorem of Franks
    Collier, Brian
    Kerman, Ely
    Reiniger, Benjamin M.
    Turmunkh, Bolor
    Zimmer, Andrew
    [J]. COMPOSITIO MATHEMATICA, 2012, 148 (06) : 1969 - 1984
  • [8] GEODESICS ON S-2 AND PERIODIC POINTS OF ANNULUS HOMEOMORPHISMS
    FRANKS, J
    [J]. INVENTIONES MATHEMATICAE, 1992, 108 (02) : 403 - 418
  • [9] GENERALIZATIONS OF THE POINCARE-BIRKHOFF THEOREM
    FRANKS, J
    [J]. ANNALS OF MATHEMATICS, 1988, 128 (01) : 139 - 151
  • [10] Franks J., 1996, New York J. Math., V2, P1