A dynamic programming approach for finite Markov processes and algorithms for the calculation of the limit matrix in Markov chains

被引:1
作者
Pickl, Stefan [1 ]
Lozovanu, Dmitrii [2 ]
机构
[1] Univ Bundeswehr, Inst Theoret Informat Math & Operat Res, Fak Informat, Munich, Germany
[2] Acad Sci, Inst Math & Comp Sci, MD-2028 Kishinev, Moldova
关键词
discrete Markov process; probability of state transition; limit state matrix; dynamic programming; polynomial time algorithm;
D O I
10.1080/02331934.2011.627333
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
New calculation procedures for finding the probabilities of state transitions of the system in discrete Markov processes based on dynamic programming are developed and polynomial time algorithms for determining the limit state matrix in such processes are proposed. Computational complexity aspects and possible applications of the proposed algorithms for the stochastic optimization problems are characterized.
引用
收藏
页码:1339 / 1358
页数:20
相关论文
共 9 条
  • [1] [Anonymous], 1960, A First Course in Stochastic Process
  • [2] [Anonymous], OPTIMIZATION MULTIOB
  • [3] [Anonymous], 2001, RANDOM GRAPHS
  • [4] Fox B., 1968, COMMUN ACM, V2, P619
  • [5] Kemeny J.G., 1976, DENUMARABLE MARKOV C
  • [6] Lozovanu D., 2009, P CTW09 WORKSH GRAPH, P221
  • [7] Lozovanu D., 2009, B ACAD SCI RM M, V2, P17
  • [8] Puterman M. L., 2005, MARKOV DECISION PROC
  • [9] Stewart W.J., 1995, Introduction to the Numerical Solution of Markov Chains