Hadamard Factorization of Stable Polynomials

被引:1
作者
Arturo Loredo-Villalobos, Carlos [1 ]
Aguirre-Hernandez, Baltazar [1 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Mexico City 09340, DF, Mexico
来源
ADVANCES IN MATHEMATICAL AND COMPUTATIONAL METHODS: ADDRESSING MODERN CHALLENGES OF SCIENCE, TECHNOLOGY, AND SOCIETY | 2011年 / 1368卷
关键词
Hurwitz polynomial; Hadamard product; Hadamard stable factorization; INTERVAL POLYNOMIALS; STABILITY; PRODUCT; THEOREM;
D O I
10.1063/1.3663506
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The stable (Hurwitz) polynomials are important in the study of differential equations systems and control theory (see [7] and [19]). A property of these polynomials is related to Hadamard product. Consider two polynomials p; q 2 is an element of R [x] : p(x) = a(n)x(n) + a(n-1)x(n-1) + ... + a(1)x+a(0) q(x) = b(m)x(m) + b(m-1)x(m-1) + ... + b(1) x + b(0) the Hadamard product (p * q) is defined as (p * q) (x) = a(k)b(k)x(k) + a(k-1)b(k-1)x(k-1) + ... + a(1)b(1)x + a(0)b(0) where k = min (m, n). Some results (see [16]) shows that if p, q is an element of R [x] are stable polynomials then (p * q) is stable, also, i.e. the Hadamard product is closed; however, the reciprocal is not always true, that is, not all stable polynomial has a factorization into two stable polynomials the same degree n, if n >= 4 (see [15]). In this work we will give some conditions to Hadamard factorization existence for stable polynomials.
引用
收藏
页数:4
相关论文
共 29 条
[1]  
Ackerman J., 2002, ROBUST CONTROL PARAM, V2nd
[2]   Sufficient algebraic conditions for stability of cones of polynomials [J].
Aguirre, B ;
Ibarra, C ;
Suárez, R .
SYSTEMS & CONTROL LETTERS, 2002, 46 (04) :255-263
[3]  
Aguirre B, 2006, BOL SOC MAT MEX, V12, P261
[4]  
Aguirre-Hernandez B., J SYSTEMS SCI UNPUB
[5]   Smooth trivial vector bundle structure of the space of Hurwitz polynomials [J].
Aguirre-Hernandez, Baltazar ;
Eduardo Frias-Armenta, Martin ;
Verduzco, Fernando .
AUTOMATICA, 2009, 45 (12) :2864-2868
[6]  
[Anonymous], 1985, COMPUTER SCI APPL MA
[7]   Necessary conditions for Hadamard factorizations of Hurwitz polynomials [J].
Arturo Loredo-Villalobos, Carlos ;
Aguirre-Hernandez, Baltazar .
AUTOMATICA, 2011, 47 (07) :1409-1413
[8]  
Barmish B.R., 1994, New tools for robustness of linear systems
[9]  
Bhattacharyya S. P., 1995, Robust control: the parametric approach
[10]   CONVEX COMBINATIONS OF STABLE POLYNOMIALS [J].
BIALAS, S ;
GARLOFF, J .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1985, 319 (03) :373-377