Automatic Classification System for Diagnosis of Cognitive Impairment Based on the Clock-Drawing Test

被引:5
作者
Jimenez-Mesa, C. [1 ,2 ]
Arco, Juan E. [3 ]
Valenti-Soler, M. [4 ]
Frades-Payo, B. [4 ]
Zea-Sevilla, M. A. [4 ]
Ortiz, A. [1 ,3 ]
Avila-Villanueva, M. [5 ]
Castillo-Barnes, Diego [1 ,2 ]
Ramirez, J. [1 ,2 ]
Del Ser-Quijano, T. [4 ]
Carnero-Pardo, C. [5 ]
Gorriz, J. M. [1 ]
机构
[1] Data Sci & Computat Intelligence DASCI Inst, Granada, Spain
[2] Univ Granada, Signal Theory Telemat & Commun Dept, Granada, Spain
[3] Univ Malaga, Commun Engn Dept, Malaga, Spain
[4] Fdn CIEN, Madrid, Spain
[5] FIDYAN Neuroctr, Granada, Spain
来源
ARTIFICIAL INTELLIGENCE IN NEUROSCIENCE: AFFECTIVE ANALYSIS AND HEALTH APPLICATIONS, PT I | 2022年 / 13258卷
关键词
Alzheimer's disease; Clock Drawing Test; Cognitive impairment; Deep learning; Image processing; Machine learning; DEMENTIA;
D O I
10.1007/978-3-031-06242-1_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The prevalence of dementia is currently increasing worldwide. This syndrome produces a deterioration in cognitive function that can not be reverted. However, an early diagnosis can be crucial for slowing its progress. The Clock Drawing Test (CDT) is a widely used paperand-pencil test for cognitive assessment in which an individual has to manually draw a clock on a paper during a certain time. Nevertheless, there are a lot of scoring systems for this test and most of them depend on the subjective assessment of the expert. This study proposes a computeraided diagnosis (CAD) system based on deep learning in order to automate the diagnosis of cognitive impairment (CI) from the result of the CDT. This is addressed by employing a preprocessing pipeline in which the clock is detected and centered, as well as binarized for decreasing the computational burden. Then, the resulting image is fed into a Convolutional Neural Network (CNN), which is used to identify the informative patterns within the CDT drawings that are relevant for the assessment of the patient's cognitive status. Performance is evaluated in a real context where differentiating between CI patients and controls. The proposed method provides an accuracy of 68.62% in this classification task, with an AUC of 74.53%. A validation method using resubstitution with upper bound correction is also discussed.
引用
收藏
页码:34 / 42
页数:9
相关论文
共 21 条
[1]   An Artificial Intelligence-Assisted Method for Dementia Detection Using Images from the Clock Drawing Test [J].
Amini, Samad ;
Zhang, Lifu ;
Hao, Boran ;
Gupta, Aman ;
Song, Mengting ;
Karjadi, Cody ;
Lin, Honghuang ;
Kolachalama, Vijaya B. ;
Au, Rhoda ;
Paschalidis, Ioannis Ch .
JOURNAL OF ALZHEIMERS DISEASE, 2021, 83 (02) :581-589
[2]   Machine Learning Analysis of Digital Clock Drawing Test Performance for Differential Classification of Mild Cognitive Impairment Subtypes Versus Alzheimer's Disease [J].
Binaco, Russell ;
Calzaretto, Nicholas ;
Epifano, Jacob ;
McGuire, Sean ;
Umer, Muhammad ;
Emrani, Sheina ;
Wasserman, Victor ;
Libon, David J. ;
Polikar, Robi .
JOURNAL OF THE INTERNATIONAL NEUROPSYCHOLOGICAL SOCIETY, 2020, 26 (07) :690-700
[3]   Evaluation of Digital Drawing Tests and Paper-and-Pencil Drawing Tests for the Screening of Mild Cognitive Impairment and Dementia: A Systematic Review and Meta-analysis of Diagnostic Studies [J].
Chan, Joyce Y. C. ;
Bat, Baker K. K. ;
Wong, Adrian ;
Chan, Tak Kit ;
Huo, Zhaohua ;
Yip, Benjamin H. K. ;
Kowk, Timothy C. Y. ;
Tsoi, Kelvin K. F. .
NEUROPSYCHOLOGY REVIEW, 2022, 32 (03) :566-576
[4]   Automatic dementia screening and scoring by applying deep learning on clock-drawing tests [J].
Chen, Shuqing ;
Stromer, Daniel ;
Alabdalrahim, Harb Alnasser ;
Schwab, Stefan ;
Weih, Markus ;
Maier, Andreas .
SCIENTIFIC REPORTS, 2020, 10 (01)
[5]   Classifying Non-Dementia and Alzheimer's Disease/Vascular Dementia Patients Using Kinematic, Time-Based, and Visuospatial Parameters: The Digital Clock Drawing Test [J].
Davoudi, Anis ;
Dion, Catherine ;
Amini, Shawna ;
Tighe, Patrick J. ;
Price, Catherine C. ;
Libon, David J. ;
Rashidi, Parisa .
JOURNAL OF ALZHEIMERS DISEASE, 2021, 82 (01) :47-57
[6]  
Freedman M., 1994, Clock drawing: A neuropsychological analysis
[7]   Artificial intelligence within the interplay between natural and artificial computation: Advances in data science, trends and applications [J].
Gorriz, Juan M. ;
Ramirez, Javier ;
Ortiz, Andres ;
Martinez-Murcia, Francisco J. ;
Segovia, Fermin ;
Suckling, John ;
Leming, Matthew ;
Zhang, Yu-Dong ;
Ramon Alvarez-Sanchez, Jose ;
Bologna, Guido ;
Bonomini, Paula ;
Casado, Fernando E. ;
Charte, David ;
Charte, Francisco ;
Contreras, Ricardo ;
Cuesta-Infante, Alfredo ;
Duro, Richard J. ;
Fernandez-Caballero, Antonio ;
Fernandez-Jover, Eduardo ;
Gomez-Vilda, Pedro ;
Grana, Manuel ;
Herrera, Francisco ;
Iglesias, Roberto ;
Lekova, Anna ;
de Lope, Javier ;
Lopez-Rubio, Ezequiel ;
Martinez-Tomas, Rafael ;
Molina-Cabello, Miguel A. ;
Montemayor, Antonio S. ;
Novais, Paulo ;
Palacios-Alonso, Daniel ;
Pantrigo, Juan J. ;
Payne, Bryson R. ;
de la Paz Lopez, Felix ;
Angelica Pinninghoff, Maria ;
Rincon, Mariano ;
Santos, Jose ;
Thurnhofer-Hemsi, Karl ;
Tsanas, Athanasios ;
Varela, Ramiro ;
Ferrandez, Jose M. .
NEUROCOMPUTING, 2020, 410 :237-270
[8]   On the computation of distribution-free performance bounds: Application to small sample sizes in neuroimaging [J].
Gorriz, Juan M. ;
Ramirez, Javier ;
Suckling, John .
PATTERN RECOGNITION, 2019, 93 :1-13
[9]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[10]   Optimized One vs One Approach in Multiclass Classification for Early Alzheimer's Disease and Mild Cognitive Impairment Diagnosis [J].
Jimenez-Mesa, Carmen ;
Alvarez Illan, Ignacio ;
Martin-Martin, Alberto ;
Castillo-Barnes, Diego ;
Jesus Martinez-Murcia, Francisco ;
Ramirez, Javier ;
Gorriz, Juan M. .
IEEE ACCESS, 2020, 8 :96981-96993