Impulsive control and synchronization of general chaotic system

被引:65
作者
Chen, DL [1 ]
Sun, JT [1 ]
Huang, CS [1 ]
机构
[1] Tongji Univ, Dept Appl Math, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.chaos.2005.05.057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The impulsive control and synchronization of chaotic systems are investigated, which unified Lorenz, Chen and Lu system. Some less conservative conditions with impulses at fixed times are provided, which can guarantee the global asymptotical stability for the impulsive control and synchronization of chaotic systems. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:213 / 218
页数:6
相关论文
共 29 条
[1]   Synchronization of Rossler and Chen chaotic dynamical systems using active control [J].
Agiza, HN ;
Yassen, MT .
PHYSICS LETTERS A, 2001, 278 (04) :191-197
[2]   On the synchronization of a class of electronic circuits that exhibit chaos [J].
Bai, EW ;
Lonngren, KE ;
Sprott, JC .
CHAOS SOLITONS & FRACTALS, 2002, 13 (07) :1515-1521
[3]  
BAINOV D, 2003, COMMUN APPL ANAL, V7, P359
[4]   Antiphase synchronization of chaos by noncontinuous coupling: two impacting oscillators [J].
Blazejczyk-Okolewska, B ;
Brindley, J ;
Czolczynski, K ;
Kapitaniak, T .
CHAOS SOLITONS & FRACTALS, 2001, 12 (10) :1823-1826
[5]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[6]   Impulsive control and synchronization of unified chaotic system [J].
Chen, SH ;
Yang, Q ;
Wang, CP .
CHAOS SOLITONS & FRACTALS, 2004, 20 (04) :751-758
[7]   Adaptive synchronization of Chua's oscillators [J].
Chua, LO ;
Yang, T ;
Zhong, GQ ;
Wu, CW .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (01) :189-201
[8]   On impulsive control and its application to Chen's chaotic system [J].
Guan, ZH ;
Liao, RQ ;
Zhou, F ;
Wang, HO .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (05) :1191-1197
[9]   Monotone synchronization of chaos [J].
Kapitaniak, T ;
Sekieta, M ;
Ogorzalek, M .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (01) :211-217
[10]   Generalizations of the concept of marginal synchronization of chaos [J].
Krawiecki, A ;
Sukiennicki, A .
CHAOS SOLITONS & FRACTALS, 2000, 11 (09) :1445-1458