Propagating Facial Prior Knowledge for Multitask Learning in Face Super-Resolution

被引:37
作者
Wang, Chenyang [1 ]
Jiang, Junjun [1 ]
Zhong, Zhiwei [1 ]
Liu, Xianming [1 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Peoples R China
关键词
Faces; Face recognition; Superresolution; Estimation; Training; Knowledge engineering; Generative adversarial networks; Face hallucination; face super-resolution; facial prior; knowledge distillation; IMAGE SUPERRESOLUTION; HALLUCINATION; REGRESSION; FEATURES; NETWORK; MODEL;
D O I
10.1109/TCSVT.2022.3181828
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Existing face hallucination methods always achieve improved performance through regularizing the model with facial prior. Most of them always estimate facial prior information first and then leverage it to help the prediction of the target high-resolution face image. However, the accuracy of prior estimation is difficult to guarantee, especially for the low-resolution face image. Once the estimated prior is inaccurate or wrong, the following face super-resolution performance is unavoidably influenced. A natural question that arises: how to incorporate facial prior effectively and efficiently without prior estimation? To achieve this goal, we propose to learn facial prior knowledge at training stage, but test only with low-resolution face image, which can overcome the difficulty of estimating accurate prior. In addition, instead of estimating facial prior, we directly explore the potential of high-quality facial prior in the training phase and progressively propagate the facial prior knowledge from the teacher network (trained with the low-resolution face/high-quality facial prior and high-resolution face image pairs) to the student network (trained with the low-resolution face and high-resolution face image pairs). Quantitative and qualitative comparisons on benchmark face datasets demonstrate that our method outperforms the state-of-the-art face super-resolution methods. The source codes of the proposed method will be available at https://github.com/wcy-cs/KDFSRNet.
引用
收藏
页码:7317 / 7331
页数:15
相关论文
共 72 条
[1]  
Baker S., 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580), P83, DOI 10.1109/AFGR.2000.840616
[2]   Super-FAN: Integrated facial landmark localization and super-resolution of real-world low resolution faces in arbitrary poses with GANs [J].
Bulat, Adrian ;
Tzimiropoulos, Georgios .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :109-117
[3]   Attention-Aware Face Hallucination via Deep Reinforcement Learning [J].
Cao, Qingxing ;
Lin, Liang ;
Shi, Yukai ;
Liang, Xiaodan ;
Li, Guanbin .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1656-1664
[4]   Super-resolution of face images using kernel PCA-based prior [J].
Chakrabarti, Ayan ;
Rajagopalan, A. N. ;
Chellappa, Rama .
IEEE TRANSACTIONS ON MULTIMEDIA, 2007, 9 (04) :888-892
[5]   Super-resolution through neighbor embedding [J].
Chang, H ;
Yeung, DY ;
Xiong, Y .
PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, 2004, :275-282
[6]   Progressive Semantic-Aware Style Transformation for Blind Face Restoration [J].
Chen, Chaofeng ;
Li, Xiaoming ;
Yang, Lingbo ;
Lin, Xianhui ;
Zhang, Lei ;
Wong, Kwan-Yee K. .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :11891-11900
[7]   Learning Spatial Attention for Face Super-Resolution [J].
Chen, Chaofeng ;
Gong, Dihong ;
Wang, Hao ;
Li, Zhifeng ;
Wong, Kwan-Yee K. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :1219-1231
[8]   Modeling and Optimizing of the Multi-Layer Nearest Neighbor Network for Face Image Super-Resolution [J].
Chen, Liang ;
Pan, Jinshan ;
Hu, Ruimin ;
Han, Zhen ;
Liang, Chao ;
Wu, Yi .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (12) :4513-4525
[9]   FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors [J].
Chen, Yu ;
Tai, Ying ;
Liu, Xiaoming ;
Shen, Chunhua ;
Yang, Jian .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2492-2501
[10]   Identity-Preserving Face Hallucination via Deep Reinforcement Learning [J].
Cheng, Xiaojuan ;
Lu, Jiwen ;
Yuan, Bo ;
Zhou, Jie .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (12) :4796-4809