A Long Journey before Cycling: Regulation of Quiescence Exit in Adult Muscle Satellite Cells

被引:11
作者
Zhou, Shaopu [1 ]
Han, Lifang [1 ]
Wu, Zhenguo [1 ,2 ]
机构
[1] Hong Kong Univ Sci & Technol, State Key Lab Mol Neurosci, Div Life Sci, Kowloon, Clearwater Bay, Hong Kong, Peoples R China
[2] Shenzhen Bay Lab, Greater Bay Biomed Innoctr, Shenzhen 518055, Peoples R China
关键词
satellite cells; quiescence exit; cell growth; checkpoints; mTORC1; cell cycle re-entry; HEMATOPOIETIC STEM-CELLS; TEMPLATE DNA STRANDS; SKELETAL-MUSCLE; SELF-RENEWAL; PROGENITOR CELLS; MITOCHONDRIAL BIOGENESIS; REVERSIBLE QUIESCENCE; MAINTAINS QUIESCENCE; TUBEROUS SCLEROSIS; RAG GTPASES;
D O I
10.3390/ijms23031748
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Skeletal muscle harbors a pool of stem cells called muscle satellite cells (MuSCs) that are mainly responsible for its robust regenerative capacities. Adult satellite cells are mitotically quiescent in uninjured muscles under homeostasis, but they exit quiescence upon injury to re-enter the cell cycle to proliferate. While most of the expanded satellites cells differentiate and fuse to form new myofibers, some undergo self-renewal to replenish the stem cell pool. Specifically, quiescence exit describes the initial transition of MuSCs from quiescence to the first cell cycle, which takes much longer than the time required for subsequent cell cycles and involves drastic changes in cell size, epigenetic and transcriptomic profiles, and metabolic status. It is, therefore, an essential period indispensable for the success of muscle regeneration. Diverse mechanisms exist in MuSCs to regulate quiescence exit. In this review, we summarize key events that occur during quiescence exit in MuSCs and discuss the molecular regulation of this process with an emphasis on multiple levels of intrinsic regulatory mechanisms. A comprehensive understanding of how quiescence exit is regulated will facilitate satellite cell-based muscle regenerative therapies and advance their applications in various disease and aging conditions.
引用
收藏
页数:20
相关论文
共 181 条
[81]   Chromatin Modifications as Determinants of Muscle Stem Cell Quiescence and Chronological Aging [J].
Liu, Ling ;
Cheung, Tom H. ;
Charville, Gregory W. ;
Hurgo, Bernadette Marie Ceniza ;
Leavitt, Tripp ;
Shih, Johnathan ;
Brunet, Anne ;
Rando, Thomas A. .
CELL REPORTS, 2013, 4 (01) :189-204
[82]  
Liu WX, 2017, ELIFE, V6, DOI [10.7554/elife.26464, 10.7554/eLife.26464]
[83]   Inducible depletion of adult skeletal muscle stem cells impairs the regeneration of neuromuscular junctions [J].
Liu, Wenxuan ;
Wei-LaPierre, Lan ;
Klose, Alanna ;
Dirksen, Robert T. ;
Chakkalakal, Joe V. .
ELIFE, 2015, 4
[84]   Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury [J].
Llorens-Bobadilla, Enric ;
Zhao, Sheng ;
Baser, Avni ;
Saiz-Castro, Gonzalo ;
Zwadlo, Klara ;
Martin-Villalba, Ana .
CELL STEM CELL, 2015, 17 (03) :329-340
[85]   Rheb binds and regulates the mTOR kinase [J].
Long, X ;
Lin, Y ;
Ortiz-Vega, S ;
Yonezawa, K ;
Avruch, J .
CURRENT BIOLOGY, 2005, 15 (08) :702-713
[86]   Delta-Like 4 Activates Notch 3 to Regulate Self-Renewal in Skeletal Muscle Stem Cells [J].
Low, SiewHui ;
Barnes, Josephine L. ;
Zammit, Peter S. ;
Beauchamp, Jonathan R. .
STEM CELLS, 2018, 36 (03) :458-466
[87]   Aging Disrupts Muscle Stem Cell Function by Impairing Matricellular WISP1 Secretion from Fibro-Adipogenic Progenitors [J].
Lukjanenko, Laura ;
Karaz, Sonia ;
Stuelsatz, Pascal ;
Gurriaran-Rodriguez, Uxia ;
Michaud, Joris ;
Dammone, Gabriele ;
Sizzano, Federico ;
Mashinchian, Omid ;
Ancel, Sara ;
Migliavacca, Eugenia ;
Liot, Sophie ;
Jacot, Guillaume ;
Metairon, Sylviane ;
Raymond, Frederic ;
Descombes, Patrick ;
Palini, Alessio ;
Chazaud, Benedicte ;
Rudnicki, Michael A. ;
Bentzinger, C. Florian ;
Feige, Jerome N. .
CELL STEM CELL, 2019, 24 (03) :433-+
[88]   Aerobic Glycolysis: Meeting the Metabolic Requirements of Cell Proliferation [J].
Lunt, Sophia Y. ;
Vander Heiden, Matthew G. .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, VOL 27, 2011, 27 :441-464
[89]   A Metabolic Roadmap for Somatic Stem Cell Fate [J].
Ly, C. Hai ;
Lynch, Gordon S. ;
Ryall, James G. .
CELL METABOLISM, 2020, 31 (06) :1052-1067
[90]  
Ma L, 2005, CELL, V121, P179, DOI 10.1016/j.cell.2005.02.031