Bounding the regularity of subschemes invariant under Pfaff fields on projective spaces

被引:2
作者
Cruz, Joana D. A. S. [1 ]
Esteves, Eduardo [2 ]
机构
[1] Univ Fed Juiz de Fora, Dept Matemat, BR-36036330 Juiz De Fora, MG, Brazil
[2] Inst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
关键词
Pfaff systems; projective spaces; invariant schemes; regularity; ONE-DIMENSIONAL FOLIATIONS; POINCARE PROBLEM; CURVES; EQUATIONS;
D O I
10.4171/CMH/244
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Pfaff field on P(k)(n) is a map eta : Omega(s)(Pkn) -> L from the sheaf of differential s-forms to an invertible sheaf. The interesting ones are those arising from a Pfaff system, as they give rise to a distribution away from their singular locus. A subscheme X subset of P(k)(n) is said to be invariant under if eta induces a Pfaff field Omega(s)(X) -> L vertical bar x. We give bounds for the Castelnuovo-Mumford regularity of invariant complete intersection subschemes (more generally, arithmetically Cohen-Macaulay subschemes) of dimension s, depending on how singular these schemes are, thus bounding the degrees of the hypersurfaces that cut them out.
引用
收藏
页码:947 / 965
页数:19
相关论文
共 19 条