Stable pairs and Gopakumar-Vafa type invariants for Calabi-Yau 4-folds

被引:19
作者
Cao, Yalong [1 ]
Maulik, Davesh [2 ]
Toda, Yukinobu [1 ]
机构
[1] Univ Tokyo, Kavli Inst Phys & Math Univ WPI, Inst Adv Study, Kashiwa, Chiba 2778583, Japan
[2] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
Stable pairs; Gopakumar-Vafa type invariants; Calabi-Yau; 4-folds; DONALDSON-THOMAS INVARIANTS; GROMOV-WITTEN INVARIANTS; CYCLES;
D O I
10.4171/JEMS/1110
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
As an analogy to the Gopakumar-Vafa conjecture on CY 3-folds, Klemm-Pandharipande defined GV type invariants on CY 4-folds using GW theory and conjectured their integrality. In this paper, we define stable pair type invariants on CY 4-folds and use them to interpret these GV type invariants. Examples are computed for both compact and non-compact CY 4-folds to support our conjectures.
引用
收藏
页码:527 / 581
页数:55
相关论文
共 43 条
[1]   The intrinsic normal cone [J].
Behrend, K ;
Fantechi, B .
INVENTIONES MATHEMATICAE, 1997, 128 (01) :45-88
[2]   Symmetric obstruction theories and Hilbert schemes of points on threefolds [J].
Behrend, Kai ;
Fantechi, Barbara .
ALGEBRA & NUMBER THEORY, 2008, 2 (03) :313-345
[3]   KODAIRA-SPENCER THEORY OF GRAVITY AND EXACT RESULTS FOR QUANTUM STRING AMPLITUDES [J].
BERSHADSKY, M ;
CECOTTI, S ;
OOGURI, H ;
VAFA, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (02) :311-427
[4]   Virtual fundamental classes for moduli spaces of sheaves on Calabi-Yau four-folds [J].
Borisov, Dennis ;
Joyce, Dominic .
GEOMETRY & TOPOLOGY, 2017, 21 (06) :3231-3311
[5]  
Cao Y., 2020, ARXIV200910909
[6]  
Cao Y., 2020, ARXIV190904897
[7]  
Cao Y., 2020, ARXIV200409355
[8]  
Cao Y., 2015, ARXIV14077659V2
[9]   Curve counting and DT/PT correspondence for Calabi-Yau 4-folds [J].
Cao, Yalong ;
Kool, Martijn .
ADVANCES IN MATHEMATICS, 2020, 375
[10]   Gopakumar-Vafa Type Invariants on Calabi-Yau 4-Folds via Descendent Insertions [J].
Cao, Yalong ;
Toda, Yukinobu .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 383 (01) :281-310