Altered Regulation of Escherichia coli Biotin Biosynthesis in BirA Superrepressor Mutant Strains

被引:41
作者
Chakravartty, Vandana [1 ]
Cronan, John E. [1 ,2 ]
机构
[1] Univ Illinois, Dept Microbiol, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA
基金
美国国家卫生研究院;
关键词
POSTTRANSLATIONAL MODIFICATION; REPRESSOR DIMERIZATION; HOLOENZYME SYNTHETASE; ACETYL-COENZYME; CARRIER PROTEIN; IN-VIVO; OPERON; BIOTINYLATION; EXPRESSION; GENE;
D O I
10.1128/JB.06549-11
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Transcription of the Escherichia coli biotin (bio) operon is directly regulated by the biotin protein ligase BirA, the enzyme that covalently attaches biotin to its cognate acceptor proteins. Binding of BirA to the bio operator requires dimerization of the protein, which is triggered by BirA-catalyzed synthesis of biotinoyl-adenylate (biotinoy1-5'-AMP), the obligatory intermediate of the ligation reaction. Although several aspects of this regulatory system are well understood, no BirA superrepressor mutant strains had been isolated. Such superrepressor BirA proteins would repress the biotin operon transcription in vivo at biotin concentrations well below those needed for repression by wild-type BirA. We isolated mutant strains having this phenotype by a combined selection-screening approach and resolved multiple mutations to give several birA superrepressor alleles, each having a single mutation, all of which showed repression dominant over that of the wild-type allele. All of these mutant strains repressed bio operon transcription in vivo at biotin concentrations that gave derepression of the wild-type strain and retained sufficient ligation activity for growth when overexpressed. All of the strains except that encoding G154D BirA showed derepression of bio operon transcription upon overproduction of a biotin-accepting protein. In BirA, G154D was a lethal mutation in single copy, and the purified protein was unable to transfer biotin from enzyme-bound biotinoyl-adenylate either to the natural acceptor protein or to a biotin-accepting peptide sequence. Consistent with the transcriptional repression data, each of the purified mutant proteins showed increased affinity for the biotin operator DNA in electrophoretic mobility shift assays. Surprisingly, although most of the mutations were located in the catalytic domain, all of those tested, except G154D BirA, had normal ligase activity. Most of the mutations that gave superrepressor phenotypes altered residues located close to the dimerization interface of BirA. However, two mutations were located at sites well removed from the interface. The properties of the superrepressor mutants strengthen and extend other data indicating that BirA function entails extensive interactions among the three domains of the protein and show that normal ligase activity does not ensure normal DNA binding.
引用
收藏
页码:1113 / 1126
页数:14
相关论文
共 47 条
[1]   Coordinate expression of the acetyl coenzyme A carboxylase genes, accB and accC, is necessary for normal regulation of biotin synthesis in Escherichia coli [J].
Abdel-Hamid, Ahmed M. ;
Cronan, John E. .
JOURNAL OF BACTERIOLOGY, 2007, 189 (02) :369-376
[2]   MODE OF ACTION OF CHLORAMPHENICOL .7. GROWTH AND MULTIPLICATION OF ESCHERICHIA COLI IN PRESENCE OF CHLORAMPHENICOL [J].
ALLISON, JL ;
CIAK, J ;
HARTMAN, RE ;
WOLFE, AD ;
HAHN, FE ;
HARTMAN, RS .
JOURNAL OF BACTERIOLOGY, 1962, 83 (03) :609-&
[3]  
[Anonymous], 2012, Molecular Cloning: A Laboratory Manual
[4]   Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:: the Keio collection [J].
Baba, Tomoya ;
Ara, Takeshi ;
Hasegawa, Miki ;
Takai, Yuki ;
Okumura, Yoshiko ;
Baba, Miki ;
Datsenko, Kirill A. ;
Tomita, Masaru ;
Wanner, Barry L. ;
Mori, Hirotada .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) :2006.0008
[5]   USE OF BIO-LAC FUSION STRAINS TO STUDY REGULATION OF BIOTIN BIOSYNTHESIS IN ESCHERICHIA-COLI [J].
BARKER, DF ;
CAMPBELL, AM .
JOURNAL OF BACTERIOLOGY, 1980, 143 (02) :789-800
[6]   THE BIRA GENE OF ESCHERICHIA-COLI ENCODES A BIOTIN HOLOENZYME SYNTHETASE [J].
BARKER, DF ;
CAMPBELL, AM .
JOURNAL OF MOLECULAR BIOLOGY, 1981, 146 (04) :451-467
[7]   GENETIC AND BIOCHEMICAL-CHARACTERIZATION OF THE BIRA GENE AND ITS PRODUCT - EVIDENCE FOR A DIRECT ROLE OF BIOTIN HOLOENZYME SYNTHETASE IN REPRESSION OF THE BIOTIN OPERON IN ESCHERICHIA-COLI [J].
BARKER, DF ;
CAMPBELL, AM .
JOURNAL OF MOLECULAR BIOLOGY, 1981, 146 (04) :469-492
[8]   A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation [J].
Beckett, D ;
Kovaleva, E ;
Schatz, PJ .
PROTEIN SCIENCE, 1999, 8 (04) :921-929
[9]   Biotin sensing: Universal influence of biotin status on transcription [J].
Beckett, Dorothy .
ANNUAL REVIEW OF GENETICS, 2007, 41 :443-464
[10]   THE PMTL NIC-CLONING VECTORS .1. IMPROVED PUC POLYLINKER REGIONS TO FACILITATE THE USE OF SONICATED DNA FOR NUCLEOTIDE SEQUENCING [J].
CHAMBERS, SP ;
PRIOR, SE ;
BARSTOW, DA ;
MINTON, NP .
GENE, 1988, 68 (01) :139-149