Existence and Ulam stability results for two orders neutral fractional differential equations

被引:1
作者
Khochemane, Houssem Eddine [1 ]
Ardjouni, Abdelouaheb [2 ]
Zitouni, Salah [2 ]
机构
[1] Ecole Normale Super Enseignement Technol, Azzaba, Skikda, Algeria
[2] Univ Souk Ahras, Dept Math & Informat, Souk Ahras 41000, Algeria
关键词
Fixed point theorems; Neutral fractional differential equations; Ulam stability; Caputo fractional derivative; BOUNDARY-VALUE-PROBLEMS;
D O I
10.1007/s13370-022-00970-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the existence and uniqueness of mild solutions for a nonlinear neutral fractional differential equation with two orders of Caputo's fractional derivative using the Krasnoselskii and Banach fixed point theorems. We establish four types of Ulam stability: Ulam-Hyers, Ulam-Hyers-Rassias, generalized Ulam-Hyers and generalized Ulam-Hyers-Rassias. Two examples are given to substantiate the usefulness of the obtained results.
引用
收藏
页数:16
相关论文
共 32 条
[1]  
Abdo M.S., 2018, INT J MATH APPL, V6, P403
[2]   A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions [J].
Agarwal, Ravi P. ;
Benchohra, Mouffak ;
Hamani, Samira .
ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (03) :973-1033
[3]   Existence of Solutions for Fractional Differential Inclusions with Antiperiodic Boundary Conditions [J].
Ahmad, Bashir ;
Otero-Espinar, Victoria .
BOUNDARY VALUE PROBLEMS, 2009,
[4]   Stability analysis for a nonlinear coupled system of fractional hybrid delay differential equations [J].
Ahmad, Israr ;
Shah, Kamal ;
Rahman, Ghaus Ur ;
Baleanu, Dumitru .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (15) :8669-8682
[5]   Mathematical analysis of nonlinear integral boundary value problem of proportional delay implicit fractional differential equations with impulsive conditions [J].
Ali, Arshad ;
Shah, Kamal ;
Abdeljawad, Thabet ;
Mahariq, Ibrahim ;
Rashdan, Mostafa .
BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
[6]   Study of implicit delay fractional differential equations under anti-periodic boundary conditions [J].
Ali, Arshad ;
Shah, Kamal ;
Abdeljawad, Thabet .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[7]  
Ali G., 2020, Arab Journal of Basic and Applied Sciences, V27, P471, DOI [10.1080/25765299.2020.1850621, DOI 10.1080/25765299.2020.1850621]
[8]   A computational algorithm for the numerical solution of fractional order delay differential equations [J].
Amin, Rohul ;
Shah, Kamal ;
Asif, Muhammad ;
Khan, Imran .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 402
[9]  
Anastassiou GA, 2011, SPRINGERBRIEF MATH, P1, DOI 10.1007/978-1-4614-0703-4
[10]  
[Anonymous], 2002, APPL ANAL