Fourier coefficients of minimal and next-to-minimal automorphic representations of simply-laced groups

被引:3
|
作者
Gourevitch, Dmitry [1 ]
Gustafsson, Henrik P. A. [2 ,3 ,4 ,5 ,6 ]
Kleinschmidt, Axel [7 ,8 ]
Persson, Daniel [9 ]
Sahi, Siddhartha [4 ]
机构
[1] Weizmann Inst Sci, Fac Math & Comp Sci, POB 26, IL-76100 Rehovot, Israel
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[3] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[4] Rutgers State Univ, Dept Math, Hill Ctr Busch Campus,110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[5] Univ Gothenburg, Dept Math Sci, SE-41296 Gothenburg, Sweden
[6] Chalmers Univ Technol, SE-41296 Gothenburg, Sweden
[7] Albert Einstein Inst, Max Planck Inst Gravitat Phys, Muhlenberg 1, DE-14476 Potsdam, Germany
[8] ULB, Int Solvay Inst, Campus Plaine CP231, BE-1050 Brussels, Belgium
[9] Chalmers Univ Technol, Dept Math Sci, SE-41296 Gothenburg, Sweden
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2022年 / 74卷 / 01期
基金
瑞典研究理事会;
关键词
Automorphic function; small representations; minimal representation; next-to-minimal representation; Fourier coefficient; Whittaker coefficient; Whittaker support; nilpotent orbit; wave-front set; string theory; NILPOTENT ORBITS; REDUCTIVE GROUPS; FORMS;
D O I
10.4153/S0008414X20000711
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we analyze Fourier coefficients of automorphic forms on a finite coverGof an adelic split simply-laced group. Let p be a minimal or next-to-minimal automorphic representation of G. We prove that any eta epsilon pi is completely determined by its Whittaker coefficients with respect to (possibly degenerate) characters of the unipotent radical of a fixed Borel subgroup, analogously to the Piatetski-Shapiro-Shalika formula for cusp forms on GL(n). We also derive explicit formulas expressing the form, as well as all its maximal parabolic Fourier coefficient, in terms of these Whittaker coefficients. Aconsequenceofour results is thenonexistence of cusp forms intheminimal and next-to-minimal automorphic spectrum. We provide detailed examples for G of type D-5 and E-8 with a view toward applications to scattering amplitudes in string theory.
引用
收藏
页码:122 / 169
页数:48
相关论文
共 11 条
  • [1] Fourier coefficients attached to small automorphic representations of SLn (A)
    Ahlen, Olof
    Gustafsson, Henrik P. A.
    Kleinschmidt, Axel
    Liu, Baiying
    Persson, Daniel
    JOURNAL OF NUMBER THEORY, 2018, 192 : 80 - 142
  • [2] On Fourier coefficients of automorphic forms of symplectic groups
    D. Ginzburg
    S. Rallis
    D. Soudry
    manuscripta mathematica, 2003, 111 : 1 - 16
  • [3] On top Fourier coefficients of certain automorphic representations of GLn
    Liu, Baiying
    Xu, Bin
    MANUSCRIPTA MATHEMATICA, 2021, 164 (1-2) : 1 - 22
  • [4] Fourier coefficients of automorphic forms, character variety orbits, and small representations
    Miller, Stephen D.
    Sahi, Siddhartha
    JOURNAL OF NUMBER THEORY, 2012, 132 (12) : 3070 - 3108
  • [5] Classification of minimal representations of real simple Lie groups
    Hiroyoshi Tamori
    Mathematische Zeitschrift, 2019, 292 : 387 - 402
  • [6] Classification of minimal representations of real simple Lie groups
    Tamori, Hiroyoshi
    MATHEMATISCHE ZEITSCHRIFT, 2019, 292 (1-2) : 387 - 402
  • [7] FOURIER COEFFICIENTS FOR THETA REPRESENTATIONS ON COVERS OF GENERAL LINEAR GROUPS
    Cai, Yuanqing
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (11) : 7585 - 7626
  • [8] Minimal representations of simple real Lie groups of non Hermitian type
    Achab, Dehbia
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 119 : 146 - 170
  • [9] Fock model and Segal-Bargmann transform for minimal representations of Hermitian Lie groups
    Hilgert, Joachim
    Kobayashi, Toshiyuki
    Mollers, Jan
    Orsted, Bent
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (11) : 3492 - 3563
  • [10] Top Fourier coefficients of residual Eisenstein series on symplectic or metaplectic groups, induced from Speh representations
    Ginzburg, David
    Soudry, David
    RESEARCH IN NUMBER THEORY, 2022, 8 (01)