Controlling Spoof Plasmons in a Metal Grating Using Graphene Surface Plasmons

被引:16
作者
Dias, Eduardo J. C. [1 ]
Peres, N. M. R. [1 ]
机构
[1] Univ Minho, Dept Phys, P-4710057 Braga, Portugal
关键词
spoof plasmons; graphene plasmons; perfect absorber; sensing; OPTICAL-PROPERTIES; NITRIDE; POLARITONS; PLATFORM;
D O I
10.1021/acsphotonics.7b00629
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Spoof plasmons mimic noble metal plasmons. The equivalent of the plasma frequency is an energy scale imposed by the geometry of the metal grating upon which they propagate. In this paper we show that the dispersion of spoof plasmons in the THz can be controlled placing a doped graphene sheet on the proximity of a metallic grating, adding more versatility to this type of system. We develop a semianalytical model, based on a perfect-metal diffraction grating. This model allows to reproduce well FDTD calculations for the same problem but with much less computer time. We discuss the optical properties of the system covering a spectral range spanning the interval from the THz to the mid-IR. It is shown that the system can be used as both a perfect absorber and a sensing device. For illustrating the latter property, we have chosen different alcohols as analytes. The frequency at which perfect absorption appears can be controlled by the geometric parameters of the grating and by the value of the Fermi energy in graphene. The theoretical results predicted throughout this work can be verified experimentally in the future.
引用
收藏
页码:3071 / 3080
页数:10
相关论文
共 41 条
[1]   Hybrid graphene plasmonic waveguide modulators [J].
Ansell, D. ;
Radko, I. P. ;
Han, Z. ;
Rodriguez, F. J. ;
Bozhevolnyi, S. I. ;
Grigorenko, A. N. .
NATURE COMMUNICATIONS, 2015, 6
[2]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[3]   Coupling of plasmon and photon modes in a graphene-based multilayer structure [J].
Ding, Lan ;
Xu, Wen ;
Zhao, Chengxiang ;
Wang, Shulin ;
Liu, Huaifeng .
OPTICS LETTERS, 2015, 40 (19) :4524-4527
[4]   Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities [J].
Efetov, Dmitri K. ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2010, 105 (25)
[5]   Electrodynamics of spoof plasmons in periodically corrugated waveguides [J].
Erementchouk, Mikhail ;
Joy, Soumitra Roy ;
Mazumder, Pinaki .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2195)
[6]   When are Surface Plasmon Polaritons Excited in the Kretschmann-Raether Configuration? [J].
Foley, Jonathan J. ;
Harutyunyan, Hayk ;
Rosenmann, Daniel ;
Divan, Ralu ;
Wiederrecht, Gary P. ;
Gray, Stephen K. .
SCIENTIFIC REPORTS, 2015, 5
[7]  
Goncalves P. A. D., 2016, An Introduction to Graphene Plasmonics, DOI 10.1142/9948
[8]  
Huang B, 2016, 2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), P4500, DOI 10.1109/PIERS.2016.7735662
[9]   Plasmonics in graphene at infrared frequencies [J].
Jablan, Marinko ;
Buljan, Hrvoje ;
Soljacic, Marin .
PHYSICAL REVIEW B, 2009, 80 (24)
[10]   Spoof surface plasmon resonant tunneling mode with high quality and Purcell factors [J].
Joy, Soumitra Roy ;
Erementchouk, Mikhail ;
Mazumder, Pinaki .
PHYSICAL REVIEW B, 2017, 95 (07)