Pedestrian Avoidance in Construction Sites

被引:0
作者
Nimmo, Josh [1 ]
Green, Richard [1 ]
机构
[1] Univ Canterbury, Dept Comp Sci & Software Engn, Christchurch, New Zealand
来源
2017 INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ) | 2017年
关键词
Pedestrian detection; Single Shot Multibox Detector; neural networks; Intel RealSense; R200;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a pedestrian detection pipeline consisting of an Intel RealSense R200 camera used for input to a Single Shot Multibox Detector based neural network for pedestrian detection. Unlike prior research the proposed system uses a neural network for detection, then establishes the distance of a pedestrian from the camera using stereoscopy in realtime using commonly available low cost hardware. Two networks are presented for pedestrian detection, the Single Shot Multibox Detector (SSD) 512, and the InceptionV4 network which has been modified to use the SSD design for pedestrian detection. Both networks are trained on a dataset created from footage captured at a Fulton Hogan site. The SSD InceptionV4 network achieves 1% mAP on the PASCAL VOC 2007 test dataset and 51% mAP on the Fulton Hogan dataset. The SSD 512 network achieves 93% mAP on the Fulton Hogan dataset and 66% mAP on the PASCAL VOC 2007 test dataset.
引用
收藏
页数:6
相关论文
共 9 条
  • [1] [Anonymous], 2016, ARXIV PREPRINT
  • [2] [Anonymous], 2012, PASCAL VISUAL OBJECT
  • [3] [Anonymous], 2015, CORR
  • [4] Bi Y., 2016, P 2016 INT MICROAIR, P50
  • [5] Human Detection Using Doppler Radar Based on Physical Characteristics of Targets
    Kim, Youngwook
    Ha, Sungjae
    Kwon, Jihoon
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (02) : 289 - 293
  • [6] Median filtering in constant time
    Perreault, Simon
    Hebert, Patrick
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (09) : 2389 - 2394
  • [7] Ren S., 2015, P 28 INT C NEUR INF
  • [8] Real-time pedestrian detection using LIDAR and convolutional neural networks
    Szarvas, Mate
    Sakai, Utsushi
    Ogata, Jun
    [J]. 2006 IEEE INTELLIGENT VEHICLES SYMPOSIUM, 2006, : 213 - +
  • [9] Deep Convolutional Neural Networks for pedestrian detection
    Tome, D.
    Monti, F.
    Baroffio, L.
    Bondi, L.
    Tagliasacchi, M.
    Tubaro, S.
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2016, 47 : 482 - 489